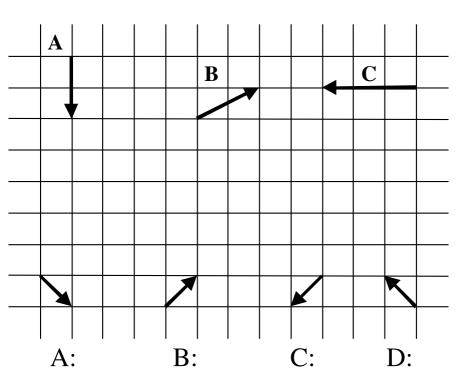

Q1.1


What are the *x*and *y*-components of the vector \vec{E} ?

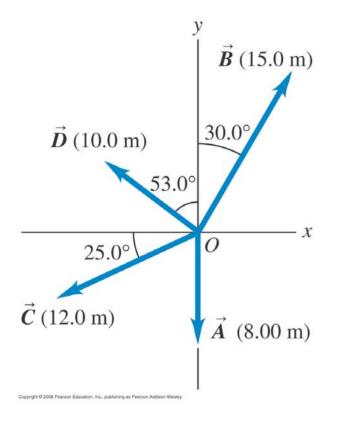
A.
$$E_x = E \cos \beta$$
, $E_y = E \sin \beta$
B. $E_x = E \sin \beta$, $E_y = E \cos \beta$
C. $E_x = -E \cos \beta$, $E_y = -E \sin \beta$
D. $E_x = -E \sin \beta$, $E_y = -E \cos \beta$
E. $E_x = -E \cos \beta$, $E_y = E \sin \beta$

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

3-5 Three vectors, **A**, **B**, and **C** are shown. Which of the four vectors at the bottom is the sum of these three? (i.e. **A**+**B**+**C**?)

Q1.2

Consider the vectors shown. Which is a correct statement about $\vec{A} + \vec{B}$?


A. *x*-component > 0, *y*-component > 0

B. *x*-component > 0, *y*-component < 0

C. *x*-component < 0, *y*-component > 0

D. *x*-component < 0, *y*-component < 0

E. *x*-component = 0, *y*-component > 0

