
Math 13 Fall 2009: Final Exam
December 19, 2009

Instructions: There are 8 questions on this exam for a total of 100 points. You may not use any outside
materials (e.g., notes, calculators, or other devices). Please turn off your cell phone. You have 3 hours to
complete this exam. Remember to fully justify your answers.

Problem 1 (15 Points).

(1) Find a vector function describing the line through P = (2, 5, 7) and Q = (4, 3, 8).
(2) Find the equation of the plane through the point P = (2, 1, 5) and containing the line described by

r(t) = 〈3t, 2 + t, 2− t〉.
(3) Determine if the following two lines are parallel, intersecting, or skew:

x = 5 + 2t y = −2− 3t z = 3 + t

and
x = 3 + 2s y = −1− 5s z = 2 + s

Proof.

(1) We have the direction of the line as 〈2,−2, 1〉 so we have vector function

〈2t + 2,−2t + 5, t + 7〉 .
(2) We have two vectors in the plane 〈3, 1,−1〉 and 〈−2, 1,−3〉. Taking their cross product gets the

normal vector

~n = det




î ĵ k̂
3 1 −1
−2 1 −3


 = 〈−2, 11, 5〉

so we have equation of the plane

−2(x− 2) + 11(y − 1) + 5(z − 5) = 0.

(3) The directions of the lines are 〈2,−3, 1〉 and 〈2,−5, 1〉 so they are not parallel. Solving for an
intersection point we find that they intersect at (1, 4, 1).

¤

Problem 2 (16 Points). Find the unit tangent vector T(t), unit normal vector N(t), unit binormal vector
B(t), and curvature κ for the helix r(t) = (a cos t)̂i + (a sin t)ĵ + btk̂, where a, b ≥ 0.

Proof. We have

r′(t) = (−a sin t)̂i + (a cos t)ĵ + bk̂

T(t) =
r′(t)
|r′(t)| =

(−a sin t)̂i + (a cos t)ĵ + bk̂√
a2 + b2

T′(t) = ((−a cos t)̂i + (−a sin t)ĵ + 0k̂)/
√

a2 + b2

N(t) =
T′(t)
|T′(t)| = (− cos t)̂i + (− sin t)ĵ

B(t) = T(t)×N(t) =
(b sin t)̂i + (−b cos t)ĵ + ak̂√

a2 + b2

κ =
|T′(t)|
|r′(t)| =

a√
a2+b2√

a2 + b2
=

a

a2 + b2
.
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Problem 3 (12 Points).
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(1) Show that

f(x, y) =

{
2x2y

x4+y2 (x, y) 6= (0, 0)
0 (x, y) = (0, 0)

is not continuous at the origin.
(2) Show that

f(x, y) =

{
2x2y+3y3

x2+y2 (x, y) 6= (0, 0)
0 (x, y) = (0, 0)

is continuous at the origin and calculate ∂f
dx (0, 0) and ∂f

dy (0, 0).

Proof.
(1) The function is a rational function so is continuous wherever it is defined. So we only need to check

continuity at (0, 0). We show that the lim(x,y)→(0,0) f(x, y) does not exist and hence the function is
not continuous at (0, 0).

We first examine the path x = y to get

lim
(x,y)→(0,0)

2x2y

x4 + y2
= lim

x→0

2x3

x2 + x4
= 0.

and next the path y = x2 to get

lim
(x,y)→(0,0)

2x2y

x4 + y2
= lim

x→0

2x4

x4 + x4
= 1.

Since these values are not equal, then limit does not exist.
(2) The function is a rational function so is continuous wherever it is defined. So we only need to check

continuity at (0, 0). Use the squeeze theorem to show that lim(x,y)→(0,0) f(x, y) = 0. In particular,
∣∣∣∣
2x2y + 3y3

x2 + y2

∣∣∣∣ ≤
∣∣∣∣

2x2y

x2 + y2

∣∣∣∣ +
∣∣∣∣

3y3

x2 + y2

∣∣∣∣ ≤
∣∣∣∣
2x2y

x2

∣∣∣∣ +
∣∣∣∣
3y3

y2

∣∣∣∣ = |2y|+ |3y|

The |2y|+ |3y| goes to 0 and y goes to 0, so by the squeeze theorem the limit is 0.
We use the limit definition to compute

∂f

dx
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

0− 0
h

= 0.

∂f

dy
(0, 0) = lim

h→0

f(0, h)− f(0, 0)
h

= lim
h→0

3h− 0
h

= 3.

¤
Problem 4 (12 Points).

(1) Let f(x, y) =
√

x2 + y2. Find the tangent plane to the surface z = f(x, y) at (3,−4, 5). Linearly
approximate the value of f(3.1,−4.1).

(2) Find the directional derivative of f(x, y) = 2ex sin y at (0, π/4) in the direction of v = 〈1,−1〉. In
what direction is the maximal rate of change at (0, π/4)?

Proof.
(1) For a surface z = f(x, y) the normal vector to the tangent plane is 〈fx, fy,−1〉. We compute

~n =

〈
x√

x2 + y2
,

y√
x2 + y2

,−1

〉
=

〈
3
5
,
−4
5

,−1
〉

which is in the same direction as 〈3,−4, 5〉. So we get tangent plane

3(x− 3)− 4(y + 4)− 5(z − 5) = 0.

Linear approximation is given by

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).
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We compute

f(x, y) ≈ 5 +
3
5
(x− 3)− 4

5
(y + 4)

and so
f(3.1,−4.1) ≈ 5 +

3
5
· 1
10

+
4
5
· 1
10

= 5
7
50

.

(2) We compute the gradient
∇(f) = 〈2ex sin y, 2ex cos y〉

at (0, π/4) this is 〈
2√
2
,

2√
2

〉
=

〈√
2,
√

2
〉

the direction is

u =
v

|v| =
〈1,−1〉√

2
so we get directional derivative

Duf = ∇f · u = 1− 1 = 0.

The maximal rate of change is in the direction of the gradient vector which is
〈1, 1〉√

2
.

¤

Problem 5 (10 Points). Find the absolute maximum and minimum values of f(x, y) = x2 + xy + y2 on the
disk x2 + y2 ≤ 4.

Proof. We first compute the critical points which are solutions to

fx = 2x + y = 0 and fy = x + 2y = 0

which has the critical point (0, 0) which is inside the disk.
Now computing the boundary condition with Lagrange Multipliers we need to solve

2x + y = λ2x

x + 2y = λ2y

x2 + y2 = 4

Multiplying the first by y and the second by x we have

2xy + y2 = λ2xy

x2 + 2xy = λ2yx

x2 + y2 = 4

So we have 2xy + y2 = x2 + 2x and hence y2 = x2 and so y = ±x. Substituting into the constraint gives

x2 + x2 = 4

and so x = ±√2. The 4 resulting points are (
√

2,±√2) and (−√2,±√2). To find the absolute max/min we
check

f(0, 0) = 0

f(±
√

2,±
√

2) = 2 + 2 + 2 = 6

f(±
√

2,∓
√

2) = 2− 2 + 2 = 2

So the absolute min is 0 which occurs at (0, 0) and the absolute max is 6 which occurs at (
√

2,
√

2) and
(−√2,−√2). ¤

Problem 6 (10 Points). Find the volume of the solid that is inside the cylinder x2 + y2 = 16 and inside the
sphere x2 + y2 + z2 = 25.
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Proof. By symmetry we compute the volume about z = 0 and double it. We have

V = 2
∫ 2π

0

∫ 4

0

∫ √
25−r2

0

r dz dr dθ = 4π

∫ 4

0

r
√

25− r2dr =
392π

3
.

¤

Problem 7 (10 Points). Evaluate ∫∫

D

x− y

x + y
dA

using the change of variables u = x + y and v = x − y, where D is the region bounded by the lines y = x,
y = x− 1, y = 1− x, and y = 2− x.

Proof. Rearranging the four boundaries we see that

y − x = 0, y − x = −1 and y + x = 1, y + x = 2.

Therefore, the new region is bounded by v = 0, v = 1, u = 1, and u = 2. We solve for x, y interms of u, v as

x =
u + v

2
and y =

u− v

2
.

We compute the jacobian as ∣∣∣∣det
(

1
2

1
2

1
2 − 1

2

)∣∣∣∣ =
∣∣∣∣−

1
4
− 1

4

∣∣∣∣ =
1
2
.

Applying the change of variables we have
∫∫

D

x− y

x + y
dA =

1
2

∫ 1

0

∫ 2

1

v

u
du dv =

1
2

ln 2
∫ 1

0

vdv =
1
4

ln 2.

¤

Problem 8 (15 Points).

(1) Calculate the line integral
∫

C
(ey + yex)dx + (ex + xey)dy, where C is a path that begins at (0,0)

and ends at (1,-1).
(2) Evaluate the line integral

∫
C

(y + ex)dx + (2x2 + cos y)dy, where C is the boundary of the triangle
with vertices (0,0), (1,1), and (2,0) traversed once counterclockwise.

(3) Calculate
∫

C
fds where f(x, y) = x + y and C is the curve x2 + y2 = 4 in the first quadrant from

(2, 0) to (0, 2).

Proof.

(1) We compute the partial integrals
∫

ey + yexdx = xey + yec + C(y)
∫

ex + xeydy = yex + xey + C(x).

Then we can choose the potential function f(x, y) = xey + yex, so
∫

C

(ey + yex)dx + (ex + xey)dy = f(1,−1)− f(0, 0) = e−1 − e.

(2) The region is a close, piecewise smooth, simple region in positive orientation, so we can apply Green’s
Theorem to get

∫

C

(y + ex)dx + (2x2 + cos y)dy =
∫ 1

0

∫ 2−y

y

(4x− 1)dxdy = 3.
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(3) We parameterize the quarter circle as r(t) = 〈2 sin t, 2 cos t〉 , 0 ≤ t ≤ π/2. Then ds is given by

ds =
√

(−2 sin t)2 + (2 cos t)2dt = 2dt.

Now we integrate ∫

C

f ds =
∫ π/2

0

(2 cos t + 2 sin t)2dt = 8.

¤
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