Physics 16 Problem Set 9 Solutions

Y&F Problems

9.6. IDENTIFY: $\omega_z(t) = \frac{d\theta}{dt}$. $\alpha_z(t) = \frac{d\omega_z}{dt}$. $\omega_{avz} = \frac{\Delta\theta}{\Delta t}$. SET UP: $\omega_z = (250 \text{ rad/s}) - (40.0 \text{ rad/s}^2)t - (4.50 \text{ rad/s}^3)t^2$. $\alpha_z = -(40.0 \text{ rad/s}^2) - (9.00 \text{ rad/s}^3)t$. EXECUTE: (a) Setting $\omega_z = 0$ results in a quadratic in t. The only positive root is t = 4.23 s. (b) At t = 4.23 s, $\alpha_z = -78.1 \text{ rad/s}^2$. (c) At t = 4.23 s, $\theta = 586 \text{ rad} = 93.3 \text{ rev}$. (d) At t = 0, $\omega_z = 250 \text{ rad/s}$. (e) $\omega_{avz} = \frac{586 \text{ rad}}{4.23 \text{ s}} = 138 \text{ rad/s}$. EVALUATE: Between t = 0 and t = 4.23 s, ω_z decreases from 250 rad/s to zero. ω_z is not linear in t, so ω_{avz} is not midway between the values of ω_z at the beginning and end of the interval. 9.15. IDENTIFY: Apply constant angular acceleration equations. SET UP: Let the direction the flywheel is rotating be positive. $\theta - \theta_0 = 200 \text{ rev}, \omega_{0z} = 500 \text{ rev/min} = 8.333 \text{ rev/s}, t = 30.0 \text{ s}$. EXECUTE: (a) $\theta - \theta_0 = \left(\frac{\omega_{0z} + \omega_z}{2}\right)t$ gives $\omega_z = 5.00 \text{ rev/s} = 300 \text{ rpm}$

(b) Use the information in part (a) to find α_z : $\omega_z = \omega_{0z} + \alpha_z t$ gives $\alpha_z = -0.1111 \text{ rev/s}^2$. Then $\omega_z = 0$, $\alpha_z = -0.1111 \text{ rev/s}^2$, $\omega_{0z} = 8.333 \text{ rev/s}$ in $\omega_z = \omega_{0z} + \alpha_z t$ gives t = 75.0 s and $\theta - \theta_0 = \left(\frac{\omega_{0z} + \omega_z}{2}\right)t$ gives $\theta - \theta_0 = 312$ rev. EVALUATE: The mass and diameter of the flywheel are not used in the calculation.

9.46. IDENTIFY: The work done on the cylinder equals its gain in kinetic energy.

SET UP: The work done on the cylinder is *PL*, where *L* is the length of the rope. $K_1 = 0$. $K_2 = \frac{1}{2}I\omega^2$.

$$I = \frac{1}{2}mr^{2} = \frac{1}{2}\left(\frac{w}{g}\right)r^{2}.$$

EXECUTE: $PL = \frac{1}{2}\frac{w}{g}v^{2}$, or $P = \frac{1}{2}\frac{w}{g}\frac{v^{2}}{L} = \frac{(40.0 \text{ N})(6.00 \text{ m/s})^{2}}{2(9.80 \text{ m/s}^{2})(5.00 \text{ m})} = 14.7 \text{ N}.$

EVALUATE: The linear speed v of the end of the rope equals the tangential speed of a point on the rim of the cylinder. When K is expressed in terms of v, the radius r of the cylinder doesn't appear.

9.47. IDENTIFY and SET UP: Combine Eqs.(9.17) and (9.15) to solve for K. Use Table 9.2 to get I. EXECUTE: $K = \frac{1}{2}I\omega^2$

 $a_{\rm rad} = R\omega^2$, so $\omega = \sqrt{a_{\rm rad}/R} = \sqrt{(3500 \text{ m/s}^2)/1.20 \text{ m}} = 54.0 \text{ rad/s}$ For a disk, $I = \frac{1}{2}MR^2 = \frac{1}{2}(70.0 \text{ kg})(1.20 \text{ m})^2 = 50.4 \text{ kg} \cdot \text{m}^2$ Thus $K = \frac{1}{2}I\omega^2 = \frac{1}{2}(50.4 \text{ kg} \cdot \text{m}^2)(54.0 \text{ rad/s})^2 = 7.35 \times 10^4 \text{ J}$ EVALUATE: The limit on $a_{\rm rad}$ limits ω which in turn limits K.

9.85. IDENTIFY: Apply conservation of energy to the system consisting of blocks *A* and *B* and the pulley. **SET UP:** The system at points 1 and 2 of its motion is sketched in Figure 9.85.

Figure 9.85

Use the work-energy relation $K_1 + U_1 + W_{other} = K_2 + U_2$. Use coordinates where +y is upward and where the origin is at the position of block *B* after it has descended. The tension in the rope does positive work on block *A* and negative work of the same magnitude on block *B*, so the net work done by the tension in the rope is zero. Both blocks have the same speed.

EXECUTE: Gravity does work on block *B* and kinetic friction does work on block *A*. Therefore $W_{\text{other}} = W_f = -\mu_k m_A g d$.

 $K_1 = 0$ (system is released from rest)

$$U_1 = m_B g y_{B1} = m_B g d; \ U_2 = m_B g y_{B2} = 0$$

$$K_2 = \frac{1}{2}m_A v_2^2 + \frac{1}{2}m_B v_2^2 + \frac{1}{2}I\omega_2^2.$$

But $v(\text{blocks}) = R\omega(\text{pulley})$, so $\omega_2 = v_2/R$ and

$$K_2 = \frac{1}{2}(m_A + m_B)v_2^2 + \frac{1}{2}I(v_2/R)^2 = \frac{1}{2}(m_A + m_B + I/R^2)v_2^2$$

Putting all this into the work-energy relation gives

$$m_B g d - \mu_k m_A g d = \frac{1}{2} (m_A + m_B + I/R^2) v_2^2$$

$$(m_A + m_B + I/R^2) v_2^2 = 2g d(m_B - \mu_k m_A)$$

$$v_2 = \sqrt{\frac{2g d(m_B - \mu_k m_A)}{m_A + m_B + I/R^2}}$$

EVALUATE: If $m_B \gg m_A$ and I/R^2 , then $v_2 = \sqrt{2gd}$; block *B* falls freely. If *I* is very large, v_2 is very small. Must have $m_B > \mu_k m_A$ for motion, so the weight of *B* will be larger than the friction force on *A*. I/R^2 has units of mass and is in a sense the "effective mass" of the pulley.

9.89. IDENTIFY: $I = I_1 + I_2$. Apply conservation of energy to the system. The calculation is similar to Example 9.9.

SET UP: $\omega = \frac{v}{R_1}$ for part (b) and $\omega = \frac{v}{R_2}$ for part (c). EXECUTE: (a) $I = \frac{1}{2}M_1R_1^2 + \frac{1}{2}M_2R_2^2 = \frac{1}{2}((0.80 \text{ kg})(2.50 \times 10^{-2} \text{ m})^2 + (1.60 \text{ kg})(5.00 \times 10^{-2} \text{ m})^2)$ $I = 2.25 \times 10^{-3} \text{ kg} \cdot \text{m}^2$.

(b) The method of Example 9.9 yields $v = \sqrt{\frac{2gh}{1 + (I/mR_1^2)}}$.

$$v = \sqrt{\frac{2(9.80 \text{ m/s}^2)(2.00 \text{ m})}{(1 + ((2.25 \times 10^{-3} \text{ kg} \cdot \text{m}^2)/(1.50 \text{ kg})(0.025 \text{ m})^2))}} = 3.40 \text{ m/s}.$$

The same calculation, with R_2 instead of R_1 gives v = 4.95 m/s.

EVALUATE: The final speed of the block is greater when the string is wrapped around the larger disk. $v = R\omega$, so when $R = R_2$ the factor that relates v to ω is larger. For $R = R_2$ a larger fraction of the total kinetic energy resides with the block. The total kinetic energy is the same in both cases (equal to mgh), so when $R = R_2$ the kinetic energy and speed of the block are greater.