Solutions to the Analysis problems on the Comprehensive Examination of February 1, 2013

1. (a) (2 points) What does it mean for a sequence $\left(a_{n}\right)$ of real numbers to be bounded? Solution: $\left(a_{n}\right)$ is said to be bounded if there exists a positive $M \in \mathbb{R}$ such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
(b) (2 points) State the Bolzano-Weierstrass Theorem as it applies to a bounded sequence $\left(a_{n}\right)$ of real numbers.
Solution: Every bounded sequence of real numbers $\left(a_{n}\right)$ contains a convergent subsequence.
2. Consider the sequence $\left(f_{n}\right)_{n \geq 1}$ of functions where $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
f_{n}(x)= \begin{cases}1-n x & \text { for } 0 \leq x \leq \frac{1}{n} \\ 0 & \text { for } x>\frac{1}{n}\end{cases}
$$

(a) (8 points) Prove that $\left(f_{n}\right)$ converges pointwise to a function f and give an explicit description of f.
Solution: First observe that $f_{n}(0)=1-n \cdot 0=1$ for all n, so that $f_{n}(0) \rightarrow 1$ as $n \rightarrow \infty$. Next assume $0<x$ and pick N such that $\frac{1}{N}<x$. For $n \geq N$, have $\frac{1}{n} \leq \frac{1}{N}<x$, so that $f_{n}(x)=0$ for $n \geq N$. So for all $x>0, f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$. It follows that $\left(f_{n}\right)$ converges pointwise on $[0, \infty)$ to

$$
f(x)= \begin{cases}1 & \text { for } x=0 \\ 0 & \text { for } x \in(0, \infty)\end{cases}
$$

(b) (6 points) Prove that $\left(f_{n}\right)$ does not converge uniformly to f.

Solution: For $n \in \mathbb{N}$, we draw the graph of f_{n} :

This makes it clear that f_{n} is continuous on $[0, \infty)$ for $n \in \mathbb{N}$. However, the limit function $f(x)$ is clearly discontinuous at 0 . Hence, since uniform convergence preserves continuity (this is a standard theorem in analysis), $\left(f_{n}\right)$ does not converge uniformly to f on $[0, \infty)$.
3. (a) (4 points) State the Cauchy Criterion for a series $\sum_{n=1}^{\infty} a_{n}$ of real numbers to converge.
Solution: $\sum_{n=1}^{\infty} a_{n}$ converges if and only if, given $\epsilon>0$, there exists $N \in \mathbb{N}$ such that if $n>m \geq N$, then $\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right|<\epsilon$.
(b) (8 points) Suppose that a series $\sum_{n=1}^{\infty} a_{n}$ of real numbers converges absolutely. Prove that the series converges.
Solution: Let $\epsilon>0$ be given. Because $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, by the Cauchy Criterion stated above, there exists $N \in \mathbb{N}$ such that $\left|\left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{n}\right|\right|=$ $\left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{n}\right|<\epsilon$ for all $n>m \geq N$. By the triangle inequality, $\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right| \leq\left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{n}\right|$. Since the latter is $<\epsilon$, we get $\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right|<\epsilon$. Using the Cauchy Criterion again, we conclude that $\sum_{n=1}^{\infty} a_{n}$ also converges.
4. (10 points) For this question, do EITHER part (a) OR part (b), NOT BOTH.
(a) Prove that the function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

is not Riemann-integrable.
Solution: Let \mathcal{P} be the collection of all possible partitions of $[0,1]$. Fix an arbitrary $P=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=1\right\} \in \mathcal{P}$. Because \mathbb{Q} is dense in \mathbb{R}, every subinterval $\left[x_{k-1}, x_{k}\right]$ of P will contain a point $x \in \mathbb{Q}$ where $f(x)=1$. It follows that $M_{k}=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}=1$, so

$$
U(f, P)=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} x_{k}-x_{k-1}=1 .
$$

Thus, because P is arbitrary, the upper integral of f is

$$
U(f)=\inf \{U(f, P): P \in \mathcal{P}\}=1
$$

By a similar argument, this time utilizing the fact that the irrationals are dense in \mathbb{R}, we see that $L(f, P)=0$ for all $P \in \mathcal{P}$. Therefore the lower integral of f is

$$
L(f)=\sup \{L(f, P): P \in \mathcal{P}\}=0
$$

It follows that $U(f) \neq L(f)$, so by definition f is not Riemann-integrable.
(b) Prove that a nonempty compact set K of real numbers has a maximum element: that is, show that there is $x \in K$ such that $x \geq y$ for all $y \in K$.
Solution: Since K is compact, by Heine-Borel it is bounded, which means it is bounded above, so because it is also nonempty, by the Axiom of Completeness, $\sup (K)$ exists. Call it x. By the definition of supremum, $x \geq y \forall y \in K$. So
it remains to show that $x \in K$. The idea is to assume $x \notin K$ and derive a contradiction. There are two ways to do this.

Use open sets. Note that $x \in \mathbb{R} \backslash K$, which is open because K is closed. By the definition of open, there exists an ϵ-neighborhood

$$
V_{\epsilon}(x)=(x-\epsilon, x+\epsilon) \subseteq \mathbb{R} \backslash K .
$$

We show that $x-\epsilon$ is also an upper bound of K as follows. Given $k \in K$, we have $k \leq x$. Since (\star) implies $k \notin(x-\epsilon, x+\epsilon)$, this forces $k \leq x-\epsilon$. Thus $x-\epsilon$ is an upper bound of K, which contradicts the assumption that $x=\sup (K)$.

Use limit points. Let $\epsilon>0$. Since $x=\sup (K)$, we know that $x-\epsilon$ is not a upper bound of K. Hence there exists $k \in K$ such that $x-\epsilon<k$. Because $k \leq x, k \in(x-\epsilon, x+\epsilon)=V_{\epsilon}(x)$. Since we are assuming $x \notin K$, we also have $k \neq x$. Hence $k \in V_{\epsilon}(x) \backslash\{x\}$. Thus we have proved that every ϵ-neighborhood of x intersects K in some point other than x, which means that x is a limit point of K. By definition, a closed set contains its limit points, and K is closed by Heine-Borel. Hence $x \in K$, which contradicts our assumption that $x \notin K$.

