
Solutions to the Analysis problems on the
Comprehensive Examination of February 1, 2013

1. (a) (2 points) What does it mean for a sequence (an) of real numbers to be bounded?

Solution: (an) is said to be bounded if there exists a positive M ∈ R such that
|an| ≤M for all n ∈ N.

(b) (2 points) State the Bolzano-Weierstrass Theorem as it applies to a bounded
sequence (an) of real numbers.

Solution: Every bounded sequence of real numbers (an) contains a convergent
subsequence.

2. Consider the sequence (fn)n≥1 of functions where fn : [0,∞)→ R is defined by

fn(x) =

{
1− nx for 0 ≤ x ≤ 1

n

0 for x > 1
n
.

(a) (8 points) Prove that (fn) converges pointwise to a function f and give an explicit
description of f .

Solution: First observe that fn(0) = 1 − n · 0 = 1 for all n, so that fn(0) → 1
as n → ∞. Next assume 0 < x and pick N such that 1

N
< x. For n ≥ N , have

1
n
≤ 1

N
< x, so that fn(x) = 0 for n ≥ N . So for all x > 0, fn(x)→ 0 as n→∞.

It follows that (fn) converges pointwise on [0,∞) to

f(x) =

{
1 for x = 0

0 for x ∈ (0,∞).

(b) (6 points) Prove that (fn) does not converge uniformly to f .

Solution: For n ∈ N, we draw the graph of fn:
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↓
x > 1

n ⇒ fn(x) = 0

← 0 ≤ x ≤ 1
n ⇒ fn(x) = 1− nx

y = fn(x)

This makes it clear that fn is continuous on [0,∞) for n ∈ N. However, the limit
function f(x) is clearly discontinuous at 0. Hence, since uniform convergence pre-
serves continuity (this is a standard theorem in analysis), (fn) does not converge
uniformly to f on [0,∞).
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3. (a) (4 points) State the Cauchy Criterion for a series
∑∞

n=1 an of real numbers to
converge.

Solution:
∑∞

n=1 an converges if and only if, given ε > 0, there exists N ∈ N such
that if n > m ≥ N , then |am+1 + am+2 + · · ·+ an| < ε.

(b) (8 points) Suppose that a series
∑∞

n=1 an of real numbers converges absolutely.
Prove that the series converges.

Solution: Let ε > 0 be given. Because
∑∞

n=1 |an| converges, by the Cauchy
Criterion stated above, there exists N ∈ N such that

∣∣|am+1|+|am+2|+· · ·+|an|
∣∣ =

|am+1| + |am+2| + · · · + |an| < ε for all n > m ≥ N . By the triangle inequality,
|am+1 + am+2 + · · ·+ an| ≤ |am+1|+ |am+2|+ · · ·+ |an|. Since the latter is < ε, we
get |am+1 + am+2 + · · ·+ an| < ε. Using the Cauchy Criterion again, we conclude
that

∑∞
n=1 an also converges.

4. (10 points) For this question, do EITHER part (a) OR part (b), NOT BOTH.

(a) Prove that the function f : [0, 1]→ R given by

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

is not Riemann-integrable.

Solution: Let P be the collection of all possible partitions of [0, 1]. Fix an
arbitrary P = {0 = x0 < x1 < · · · < xn = 1} ∈ P . Because Q is dense in R, every
subinterval [xk−1, xk] of P will contain a point x ∈ Q where f(x) = 1. It follows
that Mk = sup{f(x) : x ∈ [xk−1, xk]} = 1, so

U(f, P ) =
n∑
k=1

Mk(xk − xk−1) =
n∑
k=1

xk − xk−1 = 1.

Thus, because P is arbitrary, the upper integral of f is

U(f) = inf{U(f, P ) : P ∈ P} = 1.

By a similar argument, this time utilizing the fact that the irrationals are dense
in R, we see that L(f, P ) = 0 for all P ∈ P . Therefore the lower integral of f is

L(f) = sup{L(f, P ) : P ∈ P} = 0.

It follows that U(f) 6= L(f), so by definition f is not Riemann-integrable.

(b) Prove that a nonempty compact set K of real numbers has a maximum element:
that is, show that there is x ∈ K such that x ≥ y for all y ∈ K.

Solution: Since K is compact, by Heine-Borel it is bounded, which means it is
bounded above, so because it is also nonempty, by the Axiom of Completeness,
sup(K) exists. Call it x. By the definition of supremum, x ≥ y ∀ y ∈ K. So
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it remains to show that x ∈ K. The idea is to assume x /∈ K and derive a
contradiction. There are two ways to do this.

Use open sets. Note that x ∈ R \K, which is open because K is closed. By the
definition of open, there exists an ε-neighborhood

(?) Vε(x) = (x− ε, x+ ε) ⊆ R \K.

We show that x − ε is also an upper bound of K as follows. Given k ∈ K, we
have k ≤ x. Since (?) implies k /∈ (x− ε, x+ ε), this forces k ≤ x− ε. Thus x− ε
is an upper bound of K, which contradicts the assumption that x = sup(K).

Use limit points. Let ε > 0. Since x = sup(K), we know that x − ε is not a
upper bound of K. Hence there exists k ∈ K such that x − ε < k. Because
k ≤ x, k ∈ (x − ε, x + ε) = Vε(x). Since we are assuming x /∈ K, we also have
k 6= x. Hence k ∈ Vε(x) \ {x}. Thus we have proved that every ε-neighborhood
of x intersects K in some point other than x, which means that x is a limit point
of K. By definition, a closed set contains its limit points, and K is closed by
Heine-Borel. Hence x ∈ K, which contradicts our assumption that x /∈ K.
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