Solutions to the Algebra problems on the Comprehensive Examination of January 31, 2014

1. (20 points). Let G and H be groups, let $\phi: G \rightarrow H$ be a homomorphism, and suppose $g \in G$ is an element of some finite order $n \geq 1$.
(a) (10 points). Show that that order of $\phi(g)$ divides n.

Solution: Because g has order n, we have $g^{n}=e_{G}$, and hence

$$
(\phi(g))^{n}=\phi\left(g^{n}\right)=\phi\left(e_{G}\right)=e_{H}
$$

Therefore, $o(\phi(g))$ divides n.
(b) (10 points). Suppose that $|G|=200,|H|=72$, and the chosen element $g \in G$ has order $n=25$. Prove that g belongs to the kernel of ϕ.
Solution: We will compute $o(\phi(g))$. Since $g^{25}=e_{G}$, it follows from part (a) that

$$
o(\phi(g)) \mid 25 .
$$

But $\phi(g) \in H$, so because H is finite, we have

$$
o(\phi(g))||H|=72
$$

by Lagrange's Theorem. Since $\operatorname{gcd}(25,72)=1$, we have $o(\phi(g))=1$. Thus, $\phi(g)=e_{H}$, and hence $g \in \operatorname{ker}(\phi)$.

QED
2. (30 points). Consider the group S_{10} of permutations of the set $\{1,2,3, \ldots, 10\}$. Let $\sigma, \tau \in S_{10}$ be the permutations

$$
\sigma=(1,2,3)(4,5,6) \quad \text { and } \quad \tau=(3,4)(2,7,8,5)
$$

(a) (6 points). Write $\sigma \tau$ as a product of disjoint cycles.

Solution: $\sigma \tau=(1,2,3)(4,5,6)(3,4)(2,7,8,5)=(3,5)(1,2,7,8,6,4)$.
(b) (12 points). Compute the order of each of σ, τ, and $\sigma \tau$.

Solution: Using the LCM formula for order of a permutation given its disjoint cycle decomposition, we have

$$
o(\sigma)=\operatorname{lcm}(3,3)=3, \quad o(\tau)=\operatorname{lcm}(2,4)=4, \quad o(\sigma \tau)=\operatorname{lcm}(2,6)=6
$$

(c) (12 points). Decide whether each of σ, τ, and $\sigma \tau$ is an even or odd permutation; don't forget to justify.
Solution: σ is a product of two 3 -cycles (both even, since 3 is odd), so

$$
\sigma \text { is: } \quad \text { even }+ \text { even }=\text { even. }
$$

Similarly,

$$
\tau \text { is: } \quad \text { odd }+ \text { odd }=\text { even }
$$

so $\sigma \tau$ is the product of two evens and hence

$$
\sigma \tau \text { is: } \quad \text { even }+ \text { even }=\text { even. }
$$

3. (25 points). Let R be a ring.
(a) (10 points) Define what it means for a subset $I \subseteq R$ to be an ideal of R. If you use any other technical terms like "closed," "subring," "subgroup," "coset," etc., you must fully define those terms as well.
Solution: $I \subseteq R$ is an ideal of R if
i. I is nonempty,
ii. for every $x, y \in I$, we have $x-y \in I$, and
iii. for every $a \in R$ and $b \in I$, we have $a b, b a \in I$.
(b) (15 points) For the polynomial ring $R=\mathbb{R}[x]$, define

$$
I=\{f \in R: f(2)=f(5)=0\}
$$

Prove that I is an ideal of R.
Solution: We check each of the three criteria listed above.
i. The constant polynomial $0 \in R$ satisfies $0(2)=0(5)=0$, so $0 \in I$.
ii. Given $f, g \in I$, we have $f(2)=f(5)=g(2)=g(5)=0$. So

$$
(f-g)(2)=f(2)-g(2)=0-0=0, \quad \text { and } \quad(f-g)(5)=f(5)-g(5)=0-0=0
$$

So $f-g \in I$.
iii. Given $f \in R$ and $g \in I$, we have $g(2)=g(5)=0$. So
$(f g)(2)=f(2) g(2)=f(2) \cdot 0=0, \quad$ and $\quad(f g)(5)=f(5) g(5)=f(5) \cdot 0=0$.
So $f g \in I$. In addition, $g f=f g$, so $g f \in I$.
QED
4. (25 points). A nonzero element a of a ring is said to be nilpotent if there is a positive integer $n \geq 1$ such that $a^{n}=0$. (The element 0 itself is not said to be nilpotent.)
Let R be a commutative ring, and let $I \subseteq R$ be an ideal. Prove that the following two statements are equivalent.
(a) The quotient ring R / I contains no nilpotents.
(b) For every element $b \in R$ such that $b^{m} \in I$ for some positive integer $m \geq 1$, we have $b \in I$.

Solution: $(\mathrm{a}) \Rightarrow(\mathrm{b}):$ Given arbitrary $b \in R$, suppose $b^{m} \in I$ for some integer $m \geq 1$. Then

$$
(I+b)^{m}=I+b^{m}=I+0,
$$

where the second equality is by the coset criterion. Since R / I contains no nilpotents, we have $I+b=I+0$. Thus, $b \in I$ by the coset criterion.
(b) $\Rightarrow(\mathrm{a})$: Suppose R / I contains an element $I+b$ such that $(I+b)^{n}=I+0$ for some integer $n \geq 1$; we need to show that $I+b$ is already the zero element $I+0$. We have

$$
I+b^{n}=(I+b)^{n}=I+0
$$

and hence $b^{n} \in I$ by the coset criterion. By assumption (b), we have $b \in I$, and therefore $I+b=I+0$ by the coset criterion, as desired.

QED

