
Solutions to the Algebra problems on the
Comprehensive Examination of January 31, 2014

1. (20 points). Let G and H be groups, let φ : G → H be a homomorphism, and
suppose g ∈ G is an element of some finite order n ≥ 1.

(a) (10 points). Show that that order of φ(g) divides n.

Solution: Because g has order n, we have gn = eG, and hence(
φ(g)

)n
= φ(gn) = φ(eG) = eH .

Therefore, o(φ(g)) divides n. QED

(b) (10 points). Suppose that |G| = 200, |H| = 72, and the chosen element g ∈ G
has order n = 25. Prove that g belongs to the kernel of φ.

Solution: We will compute o(φ(g)). Since g25 = eG, it follows from part (a) that

o
(
φ(g)

)∣∣25.

But φ(g) ∈ H, so because H is finite, we have

o
(
φ(g)

)∣∣∣|H| = 72,

by Lagrange’s Theorem. Since gcd(25, 72) = 1, we have o(φ(g)) = 1. Thus,
φ(g) = eH , and hence g ∈ ker(φ). QED

2. (30 points). Consider the group S10 of permutations of the set {1, 2, 3, ..., 10}. Let
σ, τ ∈ S10 be the permutations

σ = (1, 2, 3)(4, 5, 6) and τ = (3, 4)(2, 7, 8, 5).

(a) (6 points). Write στ as a product of disjoint cycles.

Solution: στ = (1, 2, 3)(4, 5, 6)(3, 4)(2, 7, 8, 5) = (3, 5)(1, 2, 7, 8, 6, 4).

(b) (12 points). Compute the order of each of σ, τ , and στ .

Solution: Using the LCM formula for order of a permutation given its disjoint
cycle decomposition, we have

o (σ) = lcm (3, 3) = 3, o (τ) = lcm (2, 4) = 4, o (στ) = lcm (2, 6) = 6.

(c) (12 points). Decide whether each of σ, τ , and στ is an even or odd permutation;
don’t forget to justify.

Solution: σ is a product of two 3-cycles (both even, since 3 is odd), so

σ is: even + even = even.

Similarly,
τ is: odd + odd = even,

so στ is the product of two evens and hence

στ is: even + even = even.
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3. (25 points). Let R be a ring.

(a) (10 points) Define what it means for a subset I ⊆ R to be an ideal of R. If you
use any other technical terms like “closed,” “subring,” “subgroup,” “coset,” etc.,
you must fully define those terms as well.

Solution: I ⊆ R is an ideal of R if

i. I is nonempty,

ii. for every x, y ∈ I, we have x− y ∈ I, and

iii. for every a ∈ R and b ∈ I, we have ab, ba ∈ I.

(b) (15 points) For the polynomial ring R = R[x], define

I = {f ∈ R : f(2) = f(5) = 0}.
Prove that I is an ideal of R.

Solution: We check each of the three criteria listed above.

i. The constant polynomial 0 ∈ R satisfies 0(2) = 0(5) = 0, so 0 ∈ I.

ii. Given f, g ∈ I, we have f(2) = f(5) = g(2) = g(5) = 0. So

(f−g)(2) = f(2)−g(2) = 0−0 = 0, and (f−g)(5) = f(5)−g(5) = 0−0 = 0.

So f − g ∈ I.

iii. Given f ∈ R and g ∈ I, we have g(2) = g(5) = 0. So

(fg)(2) = f(2)g(2) = f(2) · 0 = 0, and (fg)(5) = f(5)g(5) = f(5) · 0 = 0.

So fg ∈ I. In addition, gf = fg, so gf ∈ I. QED

4. (25 points). A nonzero element a of a ring is said to be nilpotent if there is a positive
integer n ≥ 1 such that an = 0. (The element 0 itself is not said to be nilpotent.)

Let R be a commutative ring, and let I ⊆ R be an ideal. Prove that the following two
statements are equivalent.

(a) The quotient ring R/I contains no nilpotents.

(b) For every element b ∈ R such that bm ∈ I for some positive integer m ≥ 1, we
have b ∈ I.

Solution: (a) ⇒ (b): Given arbitrary b ∈ R, suppose bm ∈ I for some integer m ≥ 1.
Then

(I + b)m = I + bm = I + 0,

where the second equality is by the coset criterion. Since R/I contains no nilpotents,
we have I + b = I + 0. Thus, b ∈ I by the coset criterion.

(b) ⇒ (a): Suppose R/I contains an element I + b such that (I + b)n = I + 0 for some
integer n ≥ 1; we need to show that I + b is already the zero element I + 0. We have

I + bn = (I + b)n = I + 0,

and hence bn ∈ I by the coset criterion. By assumption (b), we have b ∈ I, and
therefore I + b = I + 0 by the coset criterion, as desired. QED
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