Solutions to the Algebra problems on the Comprehensive Examination of January 31, 2014

- 1. (20 points). Let G and H be groups, let $\phi : G \to H$ be a homomorphism, and suppose $g \in G$ is an element of some finite order $n \ge 1$.
 - (a) (10 points). Show that that order of $\phi(g)$ divides n.

Solution: Because g has order n, we have $g^n = e_G$, and hence

$$(\phi(g))^n = \phi(g^n) = \phi(e_G) = e_H$$

Therefore, $o(\phi(g))$ divides n.

(b) (10 points). Suppose that |G| = 200, |H| = 72, and the chosen element $g \in G$ has order n = 25. Prove that g belongs to the kernel of ϕ .

Solution: We will compute $o(\phi(g))$. Since $g^{25} = e_G$, it follows from part (a) that

$$o(\phi(g))|25.$$

But $\phi(g) \in H$, so because H is finite, we have

$$o(\phi(g))||H| = 72,$$

by Lagrange's Theorem. Since gcd(25,72) = 1, we have $o(\phi(g)) = 1$. Thus, $\phi(g) = e_H$, and hence $g \in ker(\phi)$. QED

2. (30 points). Consider the group S_{10} of permutations of the set $\{1, 2, 3, ..., 10\}$. Let $\sigma, \tau \in S_{10}$ be the permutations

$$\sigma = (1, 2, 3)(4, 5, 6)$$
 and $\tau = (3, 4)(2, 7, 8, 5)$.

- (a) (6 points). Write $\sigma\tau$ as a product of **disjoint** cycles. Solution: $\sigma\tau = (1, 2, 3)(4, 5, 6)(3, 4)(2, 7, 8, 5) = (3, 5)(1, 2, 7, 8, 6, 4).$
- (b) (12 points). Compute the order of each of σ, τ, and στ.
 Solution: Using the LCM formula for order of a permutation given its disjoint cycle decomposition, we have

$$o(\sigma) = \operatorname{lcm}(3,3) = 3,$$
 $o(\tau) = \operatorname{lcm}(2,4) = 4,$ $o(\sigma\tau) = \operatorname{lcm}(2,6) = 6.$

(c) (12 points). Decide whether each of σ , τ , and $\sigma\tau$ is an **even** or **odd** permutation; don't forget to justify.

Solution: σ is a product of two 3-cycles (both even, since 3 is odd), so

$$\sigma$$
 is: even + even = even.

Similarly,

 τ is: odd + odd = even,

so $\sigma\tau$ is the product of two evens and hence

 $\sigma \tau$ is: even + even = even.

QED

- 3. (25 points). Let R be a ring.
 - (a) (10 points) Define what it means for a subset $I \subseteq R$ to be an **ideal** of R. If you use any other technical terms like "closed," "subring," "subgroup," "coset," etc., you must fully define those terms as well.

Solution: $I \subseteq R$ is an ideal of R if

- i. *I* is nonempty,
- ii. for every $x, y \in I$, we have $x y \in I$, and
- iii. for every $a \in R$ and $b \in I$, we have $ab, ba \in I$.
- (b) (15 points) For the polynomial ring $R = \mathbb{R}[x]$, define

$$I = \{ f \in R : f(2) = f(5) = 0 \}.$$

Prove that I is an ideal of R.

Solution: We check each of the three criteria listed above.

- i. The constant polynomial $0 \in R$ satisfies 0(2) = 0(5) = 0, so $0 \in I$.
- ii. Given $f, g \in I$, we have f(2) = f(5) = g(2) = g(5) = 0. So

(f-g)(2) = f(2)-g(2) = 0-0 = 0, and (f-g)(5) = f(5)-g(5) = 0-0 = 0. So $f - g \in I$.

iii. Given $f \in R$ and $g \in I$, we have g(2) = g(5) = 0. So

$$(fg)(2) = f(2)g(2) = f(2) \cdot 0 = 0$$
, and $(fg)(5) = f(5)g(5) = f(5) \cdot 0 = 0$.
So $fg \in I$. In addition, $gf = fg$, so $gf \in I$. QED

4. (25 points). A nonzero element a of a ring is said to be *nilpotent* if there is a positive integer $n \ge 1$ such that $a^n = 0$. (The element 0 itself is *not* said to be nilpotent.)

Let R be a commutative ring, and let $I \subseteq R$ be an ideal. Prove that the following two statements are equivalent.

- (a) The quotient ring R/I contains no nilpotents.
- (b) For every element $b \in R$ such that $b^m \in I$ for some positive integer $m \ge 1$, we have $b \in I$.

Solution: (a) \Rightarrow (b): Given arbitrary $b \in R$, suppose $b^m \in I$ for some integer $m \ge 1$. Then

$$(I+b)^m = I + b^m = I + 0,$$

where the second equality is by the coset criterion. Since R/I contains no nilpotents, we have I + b = I + 0. Thus, $b \in I$ by the coset criterion.

(b) \Rightarrow (a): Suppose R/I contains an element I + b such that $(I + b)^n = I + 0$ for some integer $n \ge 1$; we need to show that I + b is already the zero element I + 0. We have

$$I + b^n = (I + b)^n = I + 0,$$

and hence $b^n \in I$ by the coset criterion. By assumption (b), we have $b \in I$, and therefore I + b = I + 0 by the coset criterion, as desired. QED