Solutions to the Multivariable Calculus and Linear Algebra problems on the
Comprehensive Examination of January 31, 2014

There are 9 problems (10 points each, totaling 90 points) on this portion of the examination.
Show all of your work.

1. Find the critical points of the function f(x,y) = z* — 4y + 2y* and classify as a local
maximum, local minimum, or a saddle point.

Solution: Since f is a polynomial, it is differentiable on R2. The critical points occur
when

felz,y) =42° —4y =0 and fy(z,y) = =4z + 4y = 0.
The second equation gives & = y, and substituting it into the first gives 42 — 42 = 0,
or z(x + 1)(z —1) = 0. Thus z = 0 or x = £1. Therefore the critical points of f are
(0,0), (1,1), and (—1,—1).
To classify of the critical points, we use the second derivative test. First let us compute
the second derivatives:

foolr,y) =120 foy(v,y) =4 fyle,y) =4
D(z,y) = foulw,y) fyu(,y) = (fay(2,9))" = 482° — 16
D(0,0) = —16 < 0, so (0,0) is a saddle point; D(1,1) =32 > 0 and f,,(1

so (1,1) is a local minimum; and D(—1,—1) = 32 > 0, fu.(—1,—1) =
(—1,—1) is also a local minimum.

12 > 0,

1) =
12 > 0, so

2. Suppose the plane z = 2x — y — 1 is tangent to the graph of z = f(x,y) at P = (5, 3).

(a) Determine f(5,3), %(5,3) and %(5,3).

Solution: We know the graphs of z = 2z —y — 1 and z = f(z,y) intersect at
P(5,3, f(5,3)),s0 f(5,3) = 2(5) —3—1 = 6. Furthermore, recall that an equation
of the tangent plane to z = f(z,y) at the point P(xq, 3o, 20) is

2 — 20 = 5L (0, y0) (z — o) + 8L (w0, 0) (v — wo0)
So we have
=20 —y—1=6+2%(53)(x—5)+5(53)(y-3).
Comparing coefficients of x and y, we obtain

26,3 =2 55,3 =-1.

(b) Estimate f(5.2,2.9).
Solution: We use the linear approximation of f at (5, 3):

f(5.2,2.9) = f(xo,y0) + %(170, Yo)(z — o) + Z—i(afo, Y0)(Y — Yo)
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~ f(5,3)+ £ (5,3)(5.2 = 5) + 5L(5,3)(2.9 — 3)
~6+2(2)+ (=1)- (—.1) = 6.5.

Here is another way to do this. Near (5,3), the graph z = f(z,y) is approximated
by the tangent plane at (5,3), which is given as z = 2z —y — 1. Thus

f(5.2,2.9) =~ 2(5.2) — (2.9) — 1 = 6.5.
3. Calculate the volume of the region inside sphere z? + y? + 2? = ¢? and outside the

cylinder 22 + y? = b2, where a > b, by using an appropriate double integral.

Solution: We are removing a vertical cylinder of radius b from a sphere of radius a.
When we think of this as double integral, the region in the plane is

R={(z,y) | b< Va2 +y?<a}={(r,0) |0< 0 <2m, b<r<a}.

The “top” of the figure is the top half of the sphere, given by z = v/a? — 2, and the
“bottom” is the bottom half of the sphere, given by z = —+v/a? — r2. Here, we are
using cylindrical coordinates. Then the double integral giving the volume is

V://m—(—m)dfl
R

27 a
_ / / o/ 72 dr df
0 b

=27 [—g (a2 — 7"2)3/2}
3 b

— _4?71— ((CL2 . a2>3/2 . (a2 o b2)3/2)

=T (-1

4. Suppose that r(t) = (3v/2t, e, %) describes the position of an object at time t.

(a) Calculate the acceleration of the object at time t.
Solution: The velocity and acceleration of the object at time t are

v(t) =1'(t) = (3v2, -3¢, 3¢™)
a(t) = (1) = (0,9¢%, 9%

(b) Calculate the speed of the object at time ¢. Simplify by factoring the expression
under the square root.

Solution: The speed of the object at time ¢ is

V(O] =/ (BV2)2 + (~3e-)2 + (3em?
= V18 + 9e =6 + 9ebt = /9(ebt + 2 + ¢61)
= 34/(e3 +e73)2 = 3(* + e77).
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(c) Calculate the distance traveled by the object between times t = 0 and f = 1.
Solution: The total distance traveled by the object between t = 0 and t =1 is

1 1 1 1
D= / Iv(t)| dt = / 3 43 dt = — e =’ — .
0 0 0 e
5. Consider the function
3y _
—= if
f(I,y) — $2+y2 1 (l’,y) 7& (070)7
0 if (,y) = (0,0).

(a) Show that f is continuous at (0,0).
Solution: Recall that f is continuous at (0,0) iff lime ,y—0,0) f(z,y) = f(0,0).

3 3
Hence we must show that  lim o
(z.)—(0,0) 2 + y?

y =rsinf, and (x,y) — 0 becomes r — 0. Then the limit is
3y° 3rdsin® 0
im % —lim Y lim 3rsin® 60 = 0,
(zy)—(0,0) 22 +y>  r—=0 12 r—0

= 0. In polar coordinates, x = r cos @,

where the last equality follows since 3r — 0 and sin® @ is bounded.
(b) Find f,(0,0) and f,(0,0).
Solution: We will directly apply the definition of partial derivatives.

BERT f(h,O)—f(0,0)_ . h20+0_0_ . 0 .
f2(0,0) = lim n R S L
and
3
I T f(O’h)_f(an)_ . 0%?}12_0_. 3h_
MO0 = = = T T =Y

6. Suppose T': V' — V is a linear transformation, B = {by, by, b3} is a basis for V| and
the matrix representation of T' with respect to B is

2 3 5
7 11 =3
-1 19 O

Determine T'(2b; + 4bj) as a linear combination of by, by, and bs.

2
Solution: The coordinate vector of 2b; + 4bs relative to B is a = [0|. Then the
4

coordinate vector of 7'(2b; + 4bs) relative to B is

2 3 5] [2 24
b=Aa=| 7 11 -3| |0| =] 2
119 0] |4 —2

Hence
T(2by + 4bs) = 24by + 2by — 2bs.
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7. Let A =

W NN
S O O
=N O

(a) Compute the eigenvalue(s) of A.
Solution: The eigenvalues of A are the roots of its characteristic polynomial

2.0 0 100 21 0 0
det(A—M3)=det [ |2 6 2| =A[0 1 0| | =det| 2 6-X 2
30 1 00 1 3 0 1-2A

= (2 — ) det [66A 13A] =(2=MN(6-A)(1-N).

Thus A has three eigenvalues: A =1, A =2, and A = 6.
(b) Find an invertible matrix C' such that C~'AC is diagonal.

Solution: We must first compute bases of the eigenspaces corresponding to the
eigenvalues of A.

A = 1: The eigenspace is the solution space of (A—1) % = 0. Being homogeneous,
we need only row reduce the coefficient matrix:

100 10 0
2 5 2| — |0 1 2/5],
300 00 0

so we have x1 = x5 + (2/5)x3 = 0 with free variable x3. The solutions are

I 0 0
To| = (—2/5).CE3 = XT3 —2/5
T3 T3 1
0
Thus the eigenspace of A associated to A = 1 has basis —2/5
1

A = 2: The eigenspace is the solution space of (A—21) 7 = 0. Being homogeneous,
we row reduce the coefficient matrix:

00 0 10 —1/3
24 2| —l01 2/3],
30 —1 00 0

so we have x; — (1/3)x3 = x9 + (2/3)x3 = 0 with free variable x3. The solutions

are
Ty | = (2/3)1’3 = T3 —2/3
T3 T3 1



1/3
Thus the eigenspace of A associated to A = 2 has basis -2 / 3

—

A = 6: The eigenspace is the solution space of (A — 61)Z = 0. As above, we row
reduce the coefficient matrix:

-4 0 O 100
2 0 22— 10 0 1},
3 0 =5 0 00
so we have 1 = x3 = 0 with free variable z5. The solutions are
T 0 0
To| = | T2 = T2 1
XT3 0 0
0
Thus the eigenspace of A associated to A = 6 has basis 1
0

Finally, because A has three linearly independent eigenvectors, it is diagonalizable
(the problem implies this anyway). Its eigenvectors form the columns of the
desired matrix

0 1/3 0
C=|-2/5 —2/3 1
1 10

(Note: One can check that C~*AC' is diagonal, but doing so is not recommended
because the calculations are extremely time-consuming.)

1 -1 1 3
8 Let A= [—1 1 0 2|, where « is a real number.
2 2 4 «
(a) For what values of a does Ax = b have at least one solution for all b € R3?
o
Solution: Let b = [by|. We can row reduce to obtain
_b3
1 =11 3 b 1 -1 1 3 by 1 -1 0 2 —bs
—1 1 0 2 bg — |0 01 b1+b2 — {0 0 1 1 b1+b2
2 =2 4 « bg 0 0 2 a—=©6 b3—2b1 0 0 0 a—16 b3—4b1—2b2

To finish the row reduction, there are two cases, depending on o — 8:
a — 16 # 0| We can divide the last row by a— 16 to obtain a leading 1 in the 4th
column. Hence we have at least one solution, no matter how we choose b € R3.

If we pick b € R? so that by — 4b; — 2by # 0, then the last row will
have a leading 1 in the last column of the augmented matrix, which implies that
the system has no solution. So b € R? can be chosen so that there is no solution.

Ax = b has at least one solution for all b € R? if and only if « # 16.
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(b) For the remainder of the problem set & = 11. Find the general solution of Ax = 0.

Solution: Set a = 11 in the partial row reduction of part (a). If we focus on the
coefficient matrix (Ax = 0 is homogeneous), we get the row reduction

1 -1 1 3 1 -1 0 2 1 =1 0 0
-1 10 2{—=1(0 01 1{ =10 0 1 0Of,
2 =2 4 11 0 0 0 11-8 0 001

which gives the equations x1 — x5 = x3 = x4 = 0 with free variable z5. Thus the
general solution is

T Lo 1
To|  [T2| _ 1
23| |0] 20
Ty 0 0

9. Suppose {u,v} is a basis for a vector space V. Prove that {u + 2v,3u — v} is also a

basis for V.

Solution: Our hypothesis implies that V' has dimension 2, and we are asked to prove
that {u + 2v,3u — v} is a basis for V' Recall that n vectors in an n-dimensional vector
basis form a basis <= they span <= they are linearly independent. Here, it is easier
to show that u+2v, 3u—wv are linearly independent. Suppose a (u+2v)+b (3u—v) = 0,
where a, b € R. Then

au + 2av + 3bu — bv =0
= (a+3b)u+ (2a — b)v = 0.

Since {u,v} is a basis for V| we know that u and v are linearly independent. Therefore
the last equation implies that

a+3b=0 and 20 — b= 0.

It is easy to show that the only solution to the above system of equations is a = b = 0,
which in turn implies that u+ 2v and 3u — v are linearly independent. As noted above,
V' has dimension 2, so that any set of 2 linearly independent vectors in V' is a basis.
Therefore, {u + 2v, 3u — v} is a basis for V.



