Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

There are 9 problems (10 points each, totaling 90 points) on this portion of the examination. Show all of your work.

1. Find the critical points of the function $f(x, y)=x^{4}-4 x y+2 y^{2}$ and classify as a local maximum, local minimum, or a saddle point.
Solution: Since f is a polynomial, it is differentiable on \mathbb{R}^{2}. The critical points occur when

$$
f_{x}(x, y)=4 x^{3}-4 y=0 \quad \text { and } \quad f_{y}(x, y)=-4 x+4 y=0
$$

The second equation gives $x=y$, and substituting it into the first gives $4 x^{3}-4 x=0$, or $x(x+1)(x-1)=0$. Thus $x=0$ or $x= \pm 1$. Therefore the critical points of f are $(0,0),(1,1)$, and $(-1,-1)$.
To classify of the critical points, we use the second derivative test. First let us compute the second derivatives:

$$
\begin{array}{r}
f_{x x}(x, y)=12 x^{2} \quad f_{x y}(x, y)=-4 \quad f_{y y}(x, y)=4 \\
D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-\left(f_{x y}(x, y)\right)^{2}=48 x^{2}-16
\end{array}
$$

$D(0,0)=-16<0$, so $(0,0)$ is a saddle point; $D(1,1)=32>0$ and $f_{x x}(1,1)=12>0$, so $(1,1)$ is a local minimum; and $D(-1,-1)=32>0, f_{x x}(-1,-1)=12>0$, so $(-1,-1)$ is also a local minimum.
2. Suppose the plane $z=2 x-y-1$ is tangent to the graph of $z=f(x, y)$ at $P=(5,3)$.
(a) Determine $f(5,3), \frac{\partial f}{\partial x}(5,3)$ and $\frac{\partial f}{\partial x}(5,3)$.

Solution: We know the graphs of $z=2 x-y-1$ and $z=f(x, y)$ intersect at $P(5,3, f(5,3))$, so $f(5,3)=2(5)-3-1=6$. Furthermore, recall that an equation of the tangent plane to $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

So we have

$$
z=2 x-y-1=6+\frac{\partial f}{\partial x}(5,3)(x-5)+\frac{\partial f}{\partial y}(5,3)(y-3) .
$$

Comparing coefficients of x and y, we obtain

$$
\frac{\partial f}{\partial x}(5,3)=2 \quad \frac{\partial f}{\partial y}(5,3)=-1 .
$$

(b) Estimate $f(5.2,2.9)$.

Solution: We use the linear approximation of f at $(5,3)$:

$$
f(5.2,2.9) \approx f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

$$
\begin{aligned}
& \approx f(5,3)+\frac{\partial f}{\partial x}(5,3)(5.2-5)+\frac{\partial f}{\partial y}(5,3)(2.9-3) \\
& \approx 6+2 \cdot(.2)+(-1) \cdot(-.1)=6.5
\end{aligned}
$$

Here is another way to do this. Near $(5,3)$, the graph $z=f(x, y)$ is approximated by the tangent plane at $(5,3)$, which is given as $z=2 x-y-1$. Thus

$$
f(5.2,2.9) \approx 2(5.2)-(2.9)-1=6.5
$$

3. Calculate the volume of the region inside sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and outside the cylinder $x^{2}+y^{2}=b^{2}$, where $a>b$, by using an appropriate double integral.
Solution: We are removing a vertical cylinder of radius b from a sphere of radius a. When we think of this as double integral, the region in the plane is

$$
R=\left\{(x, y) \mid b \leq \sqrt{x^{2}+y^{2}} \leq a\right\}=\{(r, \theta) \mid 0 \leq \theta \leq 2 \pi, b \leq r \leq a\}
$$

The "top" of the figure is the top half of the sphere, given by $z=\sqrt{a^{2}-r^{2}}$, and the "bottom" is the bottom half of the sphere, given by $z=-\sqrt{a^{2}-r^{2}}$. Here, we are using cylindrical coordinates. Then the double integral giving the volume is

$$
\begin{aligned}
V & =\iint_{R} \sqrt{a^{2}-r^{2}}-\left(-\sqrt{a^{2}-r^{2}}\right) d A \\
& =\int_{0}^{2 \pi} \int_{b}^{a} 2 r \sqrt{a^{2}-r^{2}} d r d \theta \\
& =2 \pi\left[-\frac{2}{3}\left(a^{2}-r^{2}\right)^{3 / 2}\right]_{b}^{a} \\
& =-\frac{4 \pi}{3}\left(\left(a^{2}-a^{2}\right)^{3 / 2}-\left(a^{2}-b^{2}\right)^{3 / 2}\right) \\
& =\frac{4 \pi}{3}\left(a^{2}-b^{2}\right)^{3 / 2}
\end{aligned}
$$

4. Suppose that $\mathbf{r}(t)=\left(3 \sqrt{2} t, e^{-3 t}, e^{3 t}\right)$ describes the position of an object at time t.
(a) Calculate the acceleration of the object at time t.

Solution: The velocity and acceleration of the object at time t are

$$
\begin{aligned}
& \mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\left(3 \sqrt{2},-3 e^{-3 t}, 3 e^{3 t}\right) \\
& \mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)=\left(0,9 e^{-3 t}, 9 e^{3 t}\right)
\end{aligned}
$$

(b) Calculate the speed of the object at time t. Simplify by factoring the expression under the square root.
Solution: The speed of the object at time t is

$$
\begin{aligned}
|\mathbf{v}(t)| & =\sqrt{(3 \sqrt{2})^{2}+\left(-3 e^{-3 t}\right)^{2}+\left(3 e^{3 t}\right)^{2}} \\
& =\sqrt{18+9 e^{-6 t}+9 e^{6 t}}=\sqrt{9\left(e^{6 t}+2+e^{-6 t}\right)} \\
& =3 \sqrt{\left(e^{3 t}+e^{-3 t}\right)^{2}}=3\left(e^{3 t}+e^{-3 t}\right)
\end{aligned}
$$

(c) Calculate the distance traveled by the object between times $t=0$ and $f=1$.

Solution: The total distance traveled by the object between $t=0$ and $t=1$ is

$$
D=\int_{0}^{1}|\mathbf{v}(t)| d t=\int_{0}^{1} 3 e^{3 t}+3 e^{-3 t} d t=e^{3 t}-\left.e^{-3 t}\right|_{0} ^{1}=e^{3}-\frac{1}{e^{3}}
$$

5. Consider the function

$$
f(x, y)= \begin{cases}\frac{3 y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that f is continuous at $(0,0)$.

Solution: Recall that f is continuous at $(0,0)$ iff $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)$.
Hence we must show that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 y^{3}}{x^{2}+y^{2}}=0$. In polar coordinates, $x=r \cos \theta$, $y=r \sin \theta$, and $(x, y) \rightarrow 0$ becomes $r \rightarrow 0$. Then the limit is

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 y^{3}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{3 r^{3} \sin ^{3} \theta}{r^{2}}=\lim _{r \rightarrow 0} 3 r \sin ^{3} \theta=0
$$

where the last equality follows since $3 r \rightarrow 0$ and $\sin ^{3} \theta$ is bounded.
(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution: We will directly apply the definition of partial derivatives.

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{0}{h^{2}+0}-0}{h}=\lim _{h \rightarrow 0} \frac{0}{h^{3}}=0
$$

and

$$
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{3 h^{3}}{0+h^{2}}-0}{h}=\lim _{h \rightarrow 0} \frac{3 h}{h}=3 .
$$

6. Suppose $T: V \rightarrow V$ is a linear transformation, $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis for V, and the matrix representation of T with respect to \mathcal{B} is

$$
\left[\begin{array}{rrr}
2 & 3 & 5 \\
7 & 11 & -3 \\
-1 & 19 & 0
\end{array}\right] .
$$

Determine $T\left(2 \mathbf{b}_{1}+4 \mathbf{b}_{3}\right)$ as a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}$, and \mathbf{b}_{3}.
Solution: The coordinate vector of $2 \mathbf{b}_{1}+4 \mathbf{b}_{3}$ relative to \mathcal{B} is $\mathbf{a}=\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right]$. Then the coordinate vector of $T\left(2 \mathbf{b}_{1}+4 \mathbf{b}_{3}\right)$ relative to \mathcal{B} is

$$
\mathbf{b}=A \mathbf{a}=\left[\begin{array}{rrr}
2 & 3 & 5 \\
7 & 11 & -3 \\
-1 & 19 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{r}
24 \\
2 \\
-2
\end{array}\right] .
$$

Hence

$$
T\left(2 \mathbf{b}_{1}+4 \mathbf{b}_{3}\right)=24 \mathbf{b}_{1}+2 \mathbf{b}_{2}-2 \mathbf{b}_{3} .
$$

7. Let $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 6 & 2 \\ 3 & 0 & 1\end{array}\right]$.
(a) Compute the eigenvalue(s) of A.

Solution: The eigenvalues of A are the roots of its characteristic polynomial

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{3}\right) & =\operatorname{det}\left(\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 6 & 2 \\
3 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{ccc}
2-\lambda & 0 & 0 \\
2 & 6-\lambda & 2 \\
3 & 0 & 1-\lambda
\end{array}\right] \\
& =(2-\lambda) \operatorname{det}\left[\begin{array}{cc}
6-\lambda & 2 \\
0 & 1-\lambda
\end{array}\right]=(2-\lambda)(6-\lambda)(1-\lambda) .
\end{aligned}
$$

Thus A has three eigenvalues: $\lambda=1, \lambda=2$, and $\lambda=6$.
(b) Find an invertible matrix C such that $C^{-1} A C$ is diagonal.

Solution: We must first compute bases of the eigenspaces corresponding to the eigenvalues of A.
$\lambda=1$: The eigenspace is the solution space of $(A-I) \vec{x}=\overrightarrow{0}$. Being homogeneous, we need only row reduce the coefficient matrix:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 5 & 2 \\
3 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 2 / 5 \\
0 & 0 & 0
\end{array}\right]
$$

so we have $x_{1}=x_{2}+(2 / 5) x_{3}=0$ with free variable x_{3}. The solutions are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
(-2 / 5) x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
0 \\
-2 / 5 \\
1
\end{array}\right] .
$$

Thus the eigenspace of A associated to $\lambda=1$ has basis $\left\{\left[\begin{array}{c}0 \\ -2 / 5 \\ 1\end{array}\right]\right\}$.
$\lambda=2$: The eigenspace is the solution space of $(A-2 I) \vec{x}=\overrightarrow{0}$. Being homogeneous, we row reduce the coefficient matrix:

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
2 & 4 & 2 \\
3 & 0 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & 2 / 3 \\
0 & 0 & 0
\end{array}\right]
$$

so we have $x_{1}-(1 / 3) x_{3}=x_{2}+(2 / 3) x_{3}=0$ with free variable x_{3}. The solutions are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
(1 / 3) x_{3} \\
(2 / 3) x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 / 3 \\
-2 / 3 \\
1
\end{array}\right] .
$$

Thus the eigenspace of A associated to $\lambda=2$ has basis $\left\{\left[\begin{array}{c}1 / 3 \\ -2 / 3 \\ 1\end{array}\right]\right\}$.
$\lambda=6$: The eigenspace is the solution space of $(A-6 I) \vec{x}=\overrightarrow{0}$. As above, we row reduce the coefficient matrix:

$$
\left[\begin{array}{ccc}
-4 & 0 & 0 \\
2 & 0 & 2 \\
3 & 0 & -5
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

so we have $x_{1}=x_{3}=0$ with free variable x_{2}. The solutions are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
x_{2} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

Thus the eigenspace of A associated to $\lambda=6$ has basis $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
Finally, because A has three linearly independent eigenvectors, it is diagonalizable (the problem implies this anyway). Its eigenvectors form the columns of the desired matrix

$$
C=\left[\begin{array}{rrr}
0 & 1 / 3 & 0 \\
-2 / 5 & -2 / 3 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

(Note: One can check that $C^{-1} A C$ is diagonal, but doing so is not recommended because the calculations are extremely time-consuming.)
8. Let $A=\left[\begin{array}{rrrr}1 & -1 & 1 & 3 \\ -1 & 1 & 0 & 2 \\ 2 & -2 & 4 & \alpha\end{array}\right]$, where α is a real number.
(a) For what values of α does $A \mathbf{x}=\mathbf{b}$ have at least one solution for all $\mathbf{b} \in \mathbb{R}^{3}$?

Solution: Let $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. We can row reduce to obtain
$\left[\begin{array}{rrrrr}1 & -1 & 1 & 3 & b_{1} \\ -1 & 1 & 0 & 2 & b_{2} \\ 2 & -2 & 4 & \alpha & b_{3}\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}1 & -1 & 1 & 3 & b_{1} \\ 0 & 0 & 1 & & b_{1}+b_{2} \\ 0 & 0 & 2 & \alpha-6 & b_{3}-2 b_{1}\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}1 & -1 & 0 & 2 & -b_{2} \\ 0 & 0 & 1 & 1 & b_{1}+b_{2} \\ 0 & 0 & 0 & \alpha-16 & b_{3}-4 b_{1}-2 b_{2}\end{array}\right]$
To finish the row reduction, there are two cases, depending on $\alpha-8$:
$\alpha-16 \neq 0$ We can divide the last row by $\alpha-16$ to obtain a leading 1 in the 4 th column. Hence we have at least one solution, no matter how we choose $\mathbf{b} \in \mathbb{R}^{3}$. $\alpha-16=0$ If we pick $\mathbf{b} \in \mathbb{R}^{3}$ so that $b_{3}-4 b_{1}-2 b_{2} \neq 0$, then the last row will have a leading 1 in the last column of the augmented matrix, which implies that the system has no solution. So $\mathbf{b} \in \mathbb{R}^{3}$ can be chosen so that there is no solution. Conclusion $A \mathbf{x}=\mathbf{b}$ has at least one solution for all $\mathbf{b} \in \mathbb{R}^{3}$ if and only if $\alpha \neq 16$.
(b) For the remainder of the problem set $\alpha=11$. Find the general solution of $A \mathbf{x}=\mathbf{0}$. Solution: Set $\alpha=11$ in the partial row reduction of part (a). If we focus on the coefficient matrix ($A \mathbf{x}=\mathbf{0}$ is homogeneous), we get the row reduction

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & 3 \\
-1 & 1 & 0 & 2 \\
2 & -2 & 4 & 11
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -1 & 0 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 11
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

which gives the equations $x_{1}-x_{2}=x_{3}=x_{4}=0$ with free variable x_{2}. Thus the general solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{2} \\
0 \\
0
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] .
$$

9. Suppose $\{u, v\}$ is a basis for a vector space V. Prove that $\{u+2 v, 3 u-v\}$ is also a basis for V.
Solution: Our hypothesis implies that V has dimension 2, and we are asked to prove that $\{u+2 v, 3 u-v\}$ is a basis for V Recall that n vectors in an n-dimensional vector basis form a basis \Longleftrightarrow they span \Longleftrightarrow they are linearly independent. Here, it is easier to show that $u+2 v, 3 u-v$ are linearly independent. Suppose $a(u+2 v)+b(3 u-v)=0$, where $a, b \in \mathbb{R}$. Then

$$
\begin{aligned}
a u+2 a v+3 b u-b v & =0 \\
\Rightarrow \quad(a+3 b) u+(2 a-b) v & =0 .
\end{aligned}
$$

Since $\{u, v\}$ is a basis for V, we know that u and v are linearly independent. Therefore the last equation implies that

$$
a+3 b=0 \quad \text { and } \quad 2 a-b=0 .
$$

It is easy to show that the only solution to the above system of equations is $a=b=0$, which in turn implies that $u+2 v$ and $3 u-v$ are linearly independent. As noted above, V has dimension 2 , so that any set of 2 linearly independent vectors in V is a basis. Therefore, $\{u+2 v, 3 u-v\}$ is a basis for V.

