
Solutions to the Multivariable Calculus and Linear Algebra problems on the
Comprehensive Examination of January 31, 2014

There are 9 problems (10 points each, totaling 90 points) on this portion of the examination.
Show all of your work.

1. Find the critical points of the function f(x, y) = x4 − 4xy + 2y2 and classify as a local
maximum, local minimum, or a saddle point.

Solution: Since f is a polynomial, it is differentiable on R2. The critical points occur
when

fx(x, y) = 4x3 − 4y = 0 and fy(x, y) = −4x+ 4y = 0.

The second equation gives x = y, and substituting it into the first gives 4x3 − 4x = 0,
or x(x + 1)(x − 1) = 0. Thus x = 0 or x = ±1. Therefore the critical points of f are
(0, 0), (1, 1), and (−1,−1).

To classify of the critical points, we use the second derivative test. First let us compute
the second derivatives:

fxx(x, y) = 12x2 fxy(x, y) = −4 fyy(x, y) = 4

D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))2 = 48x2 − 16

D(0, 0) = −16 < 0, so (0, 0) is a saddle point; D(1, 1) = 32 > 0 and fxx(1, 1) = 12 > 0,
so (1, 1) is a local minimum; and D(−1,−1) = 32 > 0, fxx(−1,−1) = 12 > 0, so
(−1,−1) is also a local minimum.

2. Suppose the plane z = 2x− y − 1 is tangent to the graph of z = f(x, y) at P = (5, 3).

(a) Determine f(5, 3), ∂f
∂x

(5, 3) and ∂f
∂x

(5, 3).

Solution: We know the graphs of z = 2x − y − 1 and z = f(x, y) intersect at
P (5, 3, f(5, 3)), so f(5, 3) = 2(5)−3−1 = 6. Furthermore, recall that an equation
of the tangent plane to z = f(x, y) at the point P (x0, y0, z0) is

z − z0 = ∂f
∂x

(x0, y0)(x− x0) + ∂f
∂y

(x0, y0)(y − y0)

So we have

z = 2x− y − 1 = 6 + ∂f
∂x

(5, 3)(x− 5) + ∂f
∂y

(5, 3)(y − 3).

Comparing coefficients of x and y, we obtain

∂f
∂x

(5, 3) = 2 ∂f
∂y

(5, 3) = −1.

(b) Estimate f(5.2, 2.9).

Solution: We use the linear approximation of f at (5, 3):

f(5.2, 2.9) ≈ f(x0, y0) + ∂f
∂x

(x0, y0)(x− x0) + ∂f
∂y

(x0, y0)(y − y0)
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≈ f(5, 3) + ∂f
∂x

(5, 3)(5.2− 5) + ∂f
∂y

(5, 3)(2.9− 3)

≈ 6 + 2 · (.2) + (−1) · (−.1) = 6.5.

Here is another way to do this. Near (5, 3), the graph z = f(x, y) is approximated
by the tangent plane at (5, 3), which is given as z = 2x− y − 1. Thus

f(5.2, 2.9) ≈ 2(5.2)− (2.9)− 1 = 6.5.

3. Calculate the volume of the region inside sphere x2 + y2 + z2 = a2 and outside the
cylinder x2 + y2 = b2, where a > b, by using an appropriate double integral.

Solution: We are removing a vertical cylinder of radius b from a sphere of radius a.
When we think of this as double integral, the region in the plane is

R = {(x, y) | b ≤
√
x2 + y2 ≤ a} = {(r, θ) | 0 ≤ θ ≤ 2π, b ≤ r ≤ a}.

The “top” of the figure is the top half of the sphere, given by z =
√
a2 − r2, and the

“bottom” is the bottom half of the sphere, given by z = −
√
a2 − r2. Here, we are

using cylindrical coordinates. Then the double integral giving the volume is

V =

∫∫
R

√
a2 − r2 − (−

√
a2 − r2) dA

=

∫ 2π

0

∫ a

b

2r
√
a2 − r2 dr dθ

= 2π

[
−2

3

(
a2 − r2

)3/2]a
b

= −4π

3

(
(a2 − a2)3/2 − (a2 − b2)3/2

)
=

4π

3

(
a2 − b2

)3/2
.

4. Suppose that r(t) = (3
√

2t, e−3t, e3t) describes the position of an object at time t.

(a) Calculate the acceleration of the object at time t.

Solution: The velocity and acceleration of the object at time t are

v(t) = r′(t) = (3
√

2,−3e−3t, 3e3t)

a(t) = r′′(t) = (0, 9e−3t, 9e3t).

(b) Calculate the speed of the object at time t. Simplify by factoring the expression
under the square root.

Solution: The speed of the object at time t is

|v(t)| =
√

(3
√

2)2 + (−3e−3t)2 + (3e3t)2

=
√

18 + 9e−6t + 9e6t =
√

9(e6t + 2 + e−6t)

= 3
√

(e3t + e−3t)2 = 3(e3t + e−3t).
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(c) Calculate the distance traveled by the object between times t = 0 and f = 1.

Solution: The total distance traveled by the object between t = 0 and t = 1 is

D =

∫ 1

0

|v(t)| dt =

∫ 1

0

3e3t + 3e−3t dt = e3t − e−3t
∣∣∣1
0

= e3 − 1

e3
.

5. Consider the function

f(x, y) =


3y3

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Show that f is continuous at (0, 0).

Solution: Recall that f is continuous at (0, 0) iff lim(x,y)→(0,0) f(x, y) = f(0, 0).

Hence we must show that lim
(x,y)→(0,0)

3y3

x2 + y2
= 0. In polar coordinates, x = r cos θ,

y = r sin θ, and (x, y)→ 0 becomes r → 0. Then the limit is

lim
(x,y)→(0,0)

3y3

x2 + y2
= lim

r→0

3r3 sin3 θ

r2
= lim

r→0
3r sin3 θ = 0,

where the last equality follows since 3r → 0 and sin3 θ is bounded.

(b) Find fx(0, 0) and fy(0, 0).

Solution: We will directly apply the definition of partial derivatives.

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0
h2+0
− 0

h
= lim

h→0

0

h3
= 0

and

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

3h3

0+h2
− 0

h
= lim

h→0

3h

h
= 3.

6. Suppose T : V → V is a linear transformation, B = {b1,b2,b3} is a basis for V , and
the matrix representation of T with respect to B is 2 3 5

7 11 −3
−1 19 0

 .
Determine T (2b1 + 4b3) as a linear combination of b1, b2, and b3.

Solution: The coordinate vector of 2b1 + 4b3 relative to B is a =

2
0
4

. Then the

coordinate vector of T (2b1 + 4b3) relative to B is

b = Aa =

 2 3 5
7 11 −3
−1 19 0

2
0
4

 =

 24
2
−2

 .
Hence

T (2b1 + 4b3) = 24b1 + 2b2 − 2b3.
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7. Let A =

2 0 0
2 6 2
3 0 1

.

(a) Compute the eigenvalue(s) of A.

Solution: The eigenvalues of A are the roots of its characteristic polynomial

det(A− λI3) = det

2 0 0
2 6 2
3 0 1

− λ
1 0 0

0 1 0
0 0 1

 = det

2− λ 0 0
2 6− λ 2
3 0 1− λ


= (2− λ) det

[
6− λ 2

0 1− λ

]
= (2− λ)(6− λ)(1− λ).

Thus A has three eigenvalues: λ = 1, λ = 2, and λ = 6.

(b) Find an invertible matrix C such that C−1AC is diagonal.

Solution: We must first compute bases of the eigenspaces corresponding to the
eigenvalues of A.

λ = 1: The eigenspace is the solution space of (A−I) ~x = ~0. Being homogeneous,
we need only row reduce the coefficient matrix:1 0 0

2 5 2
3 0 0

 −→
1 0 0

0 1 2/5
0 0 0

 ,
so we have x1 = x2 + (2/5)x3 = 0 with free variable x3. The solutions arex1x2

x3

 =

 0
(−2/5)x3

x3

 = x3

 0
−2/5

1

 .

Thus the eigenspace of A associated to λ = 1 has basis


 0
−2/5

1

.

λ = 2: The eigenspace is the solution space of (A−2I) ~x = ~0. Being homogeneous,
we row reduce the coefficient matrix:0 0 0

2 4 2
3 0 −1

 −→
1 0 −1/3

0 1 2/3
0 0 0

 ,
so we have x1 − (1/3)x3 = x2 + (2/3)x3 = 0 with free variable x3. The solutions
are x1x2

x3

 =

(1/3)x3
(2/3)x3
x3

 = x3

 1/3
−2/3

1

 .
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Thus the eigenspace of A associated to λ = 2 has basis


 1/3
−2/3

1

.

λ = 6: The eigenspace is the solution space of (A− 6I) ~x = ~0. As above, we row
reduce the coefficient matrix:−4 0 0

2 0 2
3 0 −5

 −→
1 0 0

0 0 1
0 0 0

 ,
so we have x1 = x3 = 0 with free variable x2. The solutions arex1x2

x3

 =

 0
x2
0

 = x2

0
1
0

 .
Thus the eigenspace of A associated to λ = 6 has basis


0

1
0

.

Finally, because A has three linearly independent eigenvectors, it is diagonalizable
(the problem implies this anyway). Its eigenvectors form the columns of the
desired matrix

C =

 0 1/3 0
−2/5 −2/3 1

1 1 0

 .
(Note: One can check that C−1AC is diagonal, but doing so is not recommended
because the calculations are extremely time-consuming.)

8. Let A =

 1 −1 1 3
−1 1 0 2

2 −2 4 α

, where α is a real number.

(a) For what values of α does Ax = b have at least one solution for all b ∈ R3?

Solution: Let b =

b1b2
b3

. We can row reduce to obtain

 1 −1 1 3 b1
−1 1 0 2 b2

2 −2 4 α b3

→
1 −1 1 3 b1

0 0 1 b1 + b2
0 0 2 α− 6 b3 − 2b1

→
1 −1 0 2 −b2

0 0 1 1 b1 + b2
0 0 0 α− 16 b3 − 4b1 − 2b2


To finish the row reduction, there are two cases, depending on α− 8:

α− 16 6= 0 We can divide the last row by α−16 to obtain a leading 1 in the 4th

column. Hence we have at least one solution, no matter how we choose b ∈ R3.

α− 16 = 0 If we pick b ∈ R3 so that b3 − 4b1 − 2b2 6= 0, then the last row will
have a leading 1 in the last column of the augmented matrix, which implies that
the system has no solution. So b ∈ R3 can be chosen so that there is no solution.

Conclusion Ax = b has at least one solution for all b ∈ R3 if and only if α 6= 16.
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(b) For the remainder of the problem set α = 11. Find the general solution of Ax = 0.

Solution: Set α = 11 in the partial row reduction of part (a). If we focus on the
coefficient matrix (Ax = 0 is homogeneous), we get the row reduction 1 −1 1 3

−1 1 0 2
2 −2 4 11

→
1 −1 0 2

0 0 1 1
0 0 0 11− 8

→
1 −1 0 0

0 0 1 0
0 0 0 1

 ,
which gives the equations x1 − x2 = x3 = x4 = 0 with free variable x2. Thus the
general solution is 

x1
x2
x3
x4

 =


x2
x2
0
0

 = x2


1
1
0
0

 .
9. Suppose {u, v} is a basis for a vector space V . Prove that {u + 2v, 3u − v} is also a

basis for V .

Solution: Our hypothesis implies that V has dimension 2, and we are asked to prove
that {u+ 2v, 3u− v} is a basis for V Recall that n vectors in an n-dimensional vector
basis form a basis ⇐⇒ they span ⇐⇒ they are linearly independent. Here, it is easier
to show that u+2v, 3u−v are linearly independent. Suppose a (u+2v)+b (3u−v) = 0,
where a, b ∈ R. Then

au+ 2av + 3bu− bv = 0

⇒ (a+ 3b)u+ (2a− b)v = 0.

Since {u, v} is a basis for V , we know that u and v are linearly independent. Therefore
the last equation implies that

a+ 3b = 0 and 2a− b = 0.

It is easy to show that the only solution to the above system of equations is a = b = 0,
which in turn implies that u+2v and 3u−v are linearly independent. As noted above,
V has dimension 2, so that any set of 2 linearly independent vectors in V is a basis.
Therefore, {u+ 2v, 3u− v} is a basis for V .
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