
Multivariable Calculus and Linear Algebra Solutions January 2016

Solutions to the Multivariable Calculus and Linear Algebra problems on the
Comprehensive Examination of January 29, 2016

1. [25 points] Find two points on the ellipsoid x2 + 2y2 + 4z2 = 10 where the tangent plane
is perpendicular to the vector 〈1, 1, −2〉.
Solution: The tangent plane to f(x, y, z) = x2 + 2y2 + 4z2 = 10 has normal vector
∇f(x, y, z) = 〈2x, 4y, 8z〉. So the tangent plane is perpendicular to 〈1, 1, −2〉 when the
gradient is parallel to ∇f(x, y, z). Thus we have the equation ∇f(x, y, z) = λ〈1, 1, −2〉,
which implies

2x = λ, 4y = λ, 8z = −2λ.

These equations yield x = 1
2
λ, y = 1

4
λ and z = −1

4
λ. Hence y = 1

2
x and z = −1

2
x.

Substituting into x2 + 2y2 + 4z2 = 10, we obtain

10 = x2 + 2(1
2
x)2 + 4(−1

2
x)2 = x2 + 1

2
x2 + x2 = 5

2
x2,

so that x2 = 2
5
· 10 = 4. Thus x = ±2, which when combined with y = 1

2
x and z = −1

2
x

gives the desired points
(x, y, z) = ±(2, 1,−1).

2. [25 points] Let f(x, y) =


4x2 + 3xy + 2y2

2x2 + y2
if (x, y) 6= (0, 0)

2 if (x, y) = (0, 0).

(a) [15 points] Compute fx(0, 0) and fy(0, 0).

Solution: First observe that when h 6= 0, we have

f(h, 0) =
4h2 + 0 + 0

2h2 + 0
= 2, f(0, h) =

0 + 0 + 2h2

0 + h2
= 2.

Then we use the definition of partial derivative to obtain

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

2− 2

h
= lim

h→0
0 = 0

and

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

2− 2

h
= lim

h→0
0 = 0.

(b) [10 points] Prove that f is not continuous at (0, 0).

Solution: Recall that f is continuous at (0, 0) iff lim(x,y)→(0,0) f(x, y) = f(0, 0).
Therefore we must show that the limit does not equal 2. Let (x, y) → (0, 0) along
y = mx, where m is any real number. Then for x 6= 0,

f(x, y) = f(x,mx) =
4x2 + 3x(mx) + 2(mx)2

2x2 + (mx)2
=
x2(4 + 3m+ 2m2)

x2(2 +m2)
=

4 + 3m+ 2m2

2 +m2
.

Thus f(x, y)→ (4 + 3m+ 2m2)/(2 +m2) as (x, y)→ (0, 0) along y = mx, so f has
different limits along different paths. Therefore lim(x,y)→(0,0) f(x, y) does not exist,
and f is not continuous at (0, 0).
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3. [25 points] Find the points at which the absolute maximum and minimum of the function
f(x, y) = xy− 1 on the disk x2 + y2 ≤ 2 occur. State all points where the extrema occur
as well as the maximum and minimum values.

Solution: We know that there exist both an absolute maximum and minimum because
f is continuous on the closed and bounded disk. The first step is thus to find the critical
points of f in the disk, which occur when fx = y = 0 and fy = x = 0, or at (x, y) = (0, 0).

We next use Lagrange multipliers to find where the extreme values of f can occur on the
boundary of the disk, x2 + y2 = 2. Writing this as g(x, y) = x2 + y2 − 2 = 0, Lagrange
multipliers gives the equations

∇f(x, y) = λ∇g(x, y) and g(x, y) = 0,

where can be written as

y = λ · 2x, x = λ · 2y, x2 + y2 − 2 = 0.

The first two equations imply y = 4λ2y, so y(4λ2 − 1) = 0. But y = 0 would imply
x = 0, which doesn’t satisfy g(x, y) = 0. Hence 4λ2− 1 = 0, so 2λ = ±1. It follows that
y = ±x. Substituting into the constraint gives 2x2 = 2, so x = ±1. Thus we get the
four boundary points (±1,±1).

In conclusion, there are five points on the disk where extrema could possibly occur: (0, 0),
(±1,±1). Since f(0, 0) = −1, f(1, 1) = f(−1,−1) = 0, and f(1,−1) = f(−1, 1) = −2,
we conclude that the absolute maximum occurs at (1, 1) and (−1,−1) and has a value
of 0, while the absolute minimum occurs at (1,−1) and (−1, 1) and has a value of −2.

4. [25 points] Consider the paraboloid z = x2 +y2, which is intersected by the plane z = 4.

(a) [15 points] Find the volume of the region that lies above the paraboloid z = x2 +y2

and below the plane z = 4.

Solution: In cylindrical coordinates the paraboloid is z = r2, and where the
paraboloid intersects the plane, r2 = x2 + y2 = z = 4, so we may express the
region as

E = {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, r2 ≤ z ≤ 4}.

Therefore the volume is

V =

∫∫∫
E

dV =

∫ 2π

0

∫ 2

0

∫ 4

r2
r dz dr dθ

= 2π

∫ 2

0

[
rz
]4
r2
dr = 2π

∫ 2

0

4r − r3 dr

= 2π

[
2r2 − r4

4

]2
0

= 2π
((

2 · 22 − 24

4

)
− 0
)

= 2π(8− 4) = 8π.
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(b) [10 points] Find the surface area of the portion of the paraboloid z = x2 + y2 that
is below the plane z = 4.

Solution: The given surface lies above the disk D in the xy-plane where x2+y2 ≤ 4.
Therefore the surface area is

A =

∫∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA

=

∫∫
D

√
1 + (2x)2 + (2y)2 dA

=

∫∫
D

√
1 + 4(x2 + y2) dA.

Converting to polar coordinates, we have

A =

∫ 2π

0

∫ 2

0

√
1 + 4r2 r dr dθ

= 2π

∫ 2

0

1

8
(1 + 4r2)1/2 8r dr, u = 1 + 4r2, du = 8r dr

= 2π

∫ 17

1

1

8
u1/2 du =

π

4

[
2

3
(u)3/2

]17
1

=
π

6

(
17
√

17− 1
)
.

5. [25 points] Let V be the vector space of polynomials of degree at most 2 and let T :
V → V be the mapping given by

T (ax2 + bx+ c) = (b− a)x2 + (c− b)x+ (a− c).

(a) [10 points] Prove that T is a linear transformation.

Solution: We first show that T preserves addition. Let u = a1x
2 + b1x + c1,v =

a2x
2 + b2x+ c2 ∈ V , where a1, b1, c1, a2, b2, c2 ∈ R. Then

T (u + v) = T ((a1x
2 + b1x+ c1) + (a2x

2 + b2x+ c2))

= T ((a1 + a2)x
2 + (b1 + b2)x+ (c1 + c2))

= (b1 + b2 − (a1 + a2))x
2 + (c1 + c2 − (b1 + b2))x+ (a1 + a2 − (c1 + c2))

= ((b1 − a1)x2 + (c1 − b1)x+ (a1 − c1)) + ((b2 − a2)x2 + (c2 − b2)x+ (a2 − c2))
= T (a1x

2 + b1x+ c1) + T (a2x
2 + b2x+ c2) = T (u) + T (v).

We now show T preserves scalar multiplication. Let k be a scalar.

T (ku) = T (k(a1x
2 + b1x+ c1)) = T (a1kx

2 + b1kx+ c1k))

= (b1k − a1k)x2 + (c1k − b1k)x+ (a1k − c1k)

= k((b1 − a1)x2 + (c1 − b1)x+ (a1 − c1))
= kT (a1x

2 + b1x+ c1) = kT (u).

Thus T is linear by definition.
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(b) [10 points] Calculate the dimension of the null space, or kernel, of T .

Solution: The kernel kerT is the subset of V consisting of all polynomials that
map to the zero polynomial 0x2 + 0x+ 0. We see that

T (ax2 + bx+ c) = (b− a)x2 + (c− b)x+ (a− c) = 0x2 + 0x+ 0

if and only if b − a = c − b = a − c = 0, which is equivalent to a = b = c. Thus
kerT is the set of all vectors of the form kx2 +kx+k, where k ∈ R. In other words,
kerT = Span ({x2 + x+ 1}). It therefore has dimension 1.

(c) [5 points] Calculate the dimension of the image space, or range, of T .

Solution: By the rank/nullity theorem, dim kerT + dim range T = dim domain
T . We have already established in part (b) that dim kerT = 1. Because V =
Span ({x2, x, 1}), dim domain T = 3. Thus, dim range T = 3− 1 = 2.

6. [30 points]

(a) [15 points] Find a basis for the subspace of R3 given by the span of the following
set of vectors: 

 2
−1

1

 ,
−4

2
−2

 ,
 1
−2

0

 ,
0

3
1


Solution: For easier reference, let us call the given set of vectors S. Since we know
that a basis for a subspace of R3 consists of at most three vectors, the vectors in
S are linearly dependent. Our task is to find a subset of S that forms a basis for
Span (S). We first express the four vectors in matrix form and calculate its reduced
echelon form: 2 −4 1 0
−1 2 −2 3

1 −2 0 1

→
 1 −2 0 1
−1 2 −2 3

2 −4 1 0

→
1 −2 0 1

0 0 −2 4
0 0 1 −2

→
1 −2 0 1

0 0 1 −2
0 0 0 0


Since there are pivots (leading 1s) in columns 1 and 3, we conclude that the first
and the third vectors in S form a basis of the span. The desired basis is then

B =


 2
−1

1

 ,
 1
−2

0

 .

(b) [15 points] Give an example of a vector in R3 that is not in the subspace in part
(a). Justify your answer.

Solution: Any vector in R3 that cannot be expressed as a linear combination of
the two vectors in B is acceptable as an answer. An easy method of finding one such
vector is to take the cross product of the two vectors, as the result is orthogonal to
both vectors and thus cannot be in their span. In this case, 2

−1
1

×
 1
−2

0

 =

 2
1
−3

 .
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7. [20 points] Suppose that V is a vector space with basis {v1,v2,v3}. Prove that the set

{v1 + v2 + v3,v1 + v2,v1}

is also a basis for V .

Solution: Because V has as a basis consisting of three vectors, it has dimension 3. Recall
that n vectors in an n-dimensional vector basis form a basis ⇐⇒ they span ⇐⇒ they
are linearly independent. Here, it is easier to show that v1 + v2 + v3,v1 + v2,v1 are
linearly independent. Suppose that

a(v1 + v2 + v3) + b(v1 + v2) + cv1 = 0.

Then
(a+ b+ c)v1 + (a+ b)v2 + av3 = 0,

which implies
a+ b+ c = a+ b = a = 0

since v1,v2,v3 are linearly independent. These equations imply a = 0 and then b = 0
and finally c = 0. We conclude that {v1 + v2 + v3,v1 + v2,v1} is linearly independent
and hence is a basis by the theorem noted above.

8. [25 points]

(a) [10 points] Calculate the eigenvalues of the matrix

A =

0 4 2
0 −2 1
0 −1 0

 .
Solution: The eigenvalues of A are the roots of its characteristic polynomial

det(A− λI3) = det

0 4 2
0 −2 1
0 −1 0

− λ
1 0 0

0 1 0
0 0 1

 = det

−λ 4 2
0 −2− λ 1
0 −1 −λ


= −λ det

[
−2− λ 1
−1 −λ

]
= −λ

(
(−2− λ)(−λ) + 1

)
= −λ(λ2 + 2λ+ 1) = −λ(λ+ 1)2.

This has two roots: λ = 0 and λ = −1. These are the two eigenvalues of A.

(b) [15 points] Show that the matrix A is not diagonalizable.

Solution: We know that an 3 × 3 matrix is diagonalizable iff it has 3 linearly
independent eigenvectors. To prove that A is not diagonalizable, we will examine
the eigenspaces.
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λ = −1. The eigenspace is the solution space of (A+I3)x = 0. Being homogeneous,
we need only row reduce the coefficient matrix:1 4 2

0 −1 1
0 −1 1

 −→
1 0 6

0 1 −1
0 0 0

 ,
which has rank 2. By the rank-nullity theorem, the dimension of the nullspace (=
the eigenspace of −1) is 3 − 2 = 1. Hence there is only one linearly independent
eigenvector when λ = −1.

λ = 0. The eigenspace is the solution space of (A − 0I3)x = Ax = 0. Being
homogeneous, we need only row reduce the coefficient matrix:0 4 2

0 −2 1
0 −1 0

 −→
0 1 0

0 0 1
0 0 0

 ,
which has rank 2. By the rank-nullity theorem, the dimension of the nullspace (=
the eigenspace of 0) is 3 − 2 = 1. Hence there is only one linearly independent
eigenvector when λ = 0.

It follows that there are only two linearly independent eigenvectors. So A is not
diagonalizable.

Alternate Solution: The 3 × 3 matrix A is diagonalizable if and only if A has
three linearly independent eigenvectors. The theory of eigenspaces provides the
tools needed to decide whether or not A is diagonalizable:

• The dimension of each eigenspace is bounded by the multiplicity of the corre-
sponding eigenvalue in the characteristic polynomial. Thus the eigenspace of
λ = 0 has dimension ≤ 1 and the eigenspace of λ = −1 has dimension ≤ 2.

• A is diagonalizable ⇐⇒ the dimensions of the eigenspaces add up to 3 ⇐⇒
if the dimension of the each eigenspace equals the multiplicity of the eigenvalue
in the characteristic polynomial.

We begin with λ = −1. The eigenspace is the solution space of (A + I3)x = 0.
Being homogeneous, we need only row reduce the coefficient matrix:0 4 2

0 −2 1
0 −1 0

 −→
0 1 0

0 0 1
0 0 0

 ,
which has rank 2. By the rank-nullity theorem, the dimension of the nullspace
(= the eigenspace of −1) is 3 − 2 = 1. This is strictly smaller than 2, which is
the multiplicity of −1 as a root of the characteristic polynomial. Hence A is not
diagonalizable.
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