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Topics

· (20) Trigonometric functions

· (21) The law of cosines

· (22) The law of sines

· (23) Angle-addition, double-angle, and half-angle formulae 

· (24) Definitions of function and relation

· (25) Composition of functions; inverse functions

· (26) The inverse trigonometric functions

· Graphing Trigonometric Functions (excerpt from Topic 27 on Graphing)

XX.
Trigonometric functions

We define the trigonometric functions first as ratios of sides in a right triangle.  Afterward we will discuss a more general definition involving the unit circle.

Trigonometric functions’ inputs are the non-right angles of a right triangle and their outputs are ratios of sides in a right triangle.  Assume we are given a right triangle labelled in the following manner: A, B, C are the angles of the triangle and C is the right angle; and a, b, c are the lengths of the sides opposite A, B, and C, respectively.  Since c is opposite C = 90(, c is the length of the hypotenuse.  The sine of the angle A, or sin A, is the fraction a/c – that is, 

opposite side/hypotenuse.  The cosine of the angle A, or cos A, is b/c – that is, 

adjacent side/hypotenuse.  The tangent of the angle A, or tan A, is equal to (sin A)/(cos A) = (a/c)(b/c) = (a/b)*(c/c) = a/b – that is, opposite side/adjacent side.  The invented word sohcahtoa is a mnemonic device that might help one to remember these ratios: 

sine = opposite/hypotenuse, cosine = adjacent/hypotenuse, and  tangent = opposite/adjacent.


Note that sin A = cos B and sin B = cos A.  Since A + B + C = 180( and C = 90(, we know that A + B = 90(; then 90( – A = B and 90( – B = A.  We see that sin A = 

cos(90( – A) = cos B and cos A = cos(90( – B) = sin B.  The sine and cosine curves have the same shape.  The cosine curve is the sine curve shifted 90( to the left.  


The other ratios we may create in our general right triangle are the reciprocals of the ratios already presented.  The reciprocal of the sine of A, or 1/sin A, is the cosecant of A, or 

csc A.  The reciprocal of the cosine of A, or 1/cos A, is the secant of A, or sec A.  The reciprocal of the tangent of A, or (cos A)/(sin A), is the cotangent of A, or cot A.

Unit-circle definitions of the sine and cosine functions

The trigonometric functions may be defined by the coordinates of points on a unit circle (a circle with radius of length one unit) centered at the origin. From any point on the circle, we may extend a line to meet the x-axis perpendicularly.  The length of this line is the y-coordinate of the point.  If we extend a line from the vertical line’s point of intersection with the x-axis to the origin, we will have a horizontal line whose length is the point’s x-coordinate.  The vertical and horizontal lines create a right triangle.  Once we have a right triangle, we may apply the Pythagorean Theorem.  We have that the length of the horizontal line2 + 

the length of the vertical line2 = 1 since the radius of the circle (i.e., the hypotenuse of the right triangle) is 1.  That is, x-coordinate2 + y-coordinate2 = 1; or x2 + y2 = 1.

Recall that the circumference of a circle is 2(r.  A unit circle has radius 1 and, therefore, circumference 2(.  Consider the radial line that extends from the origin to the point (1,0) on the unit circle.  Now let this radial line rotate counterclockwise through all of the circle’s 360(.  The non-fixed tip of the radial line passes through every point on the circle.  In one rotation, the tip moves through a distance of 2(, the circumference.  We may specify a point on the circle by giving the distance through which the radial tip has travelled to arrive at that point (having begun at (1,0)).  For example, the point (1,0) ( 0 ( 2(; the point (0,1) ( 2(/4 = (/2; the point 

(1/2½, 1/2½) ( 2(/8 = (/4.

Also, we may associate with each circumferential distance the degree-measure of the angle through which the radial line has passed (having begun at (1,0)).  For example, at the moment the radial line passes through (0,1), the radial tip has moved through a distance of (/2, and the radial line has moved through an angle of 90(.  At the moment the radial line passes through (-1,0), the radial tip has moved through a distance of (, and the radial line has moved through an angle of 180(.  Clearly, we may specify any angle by a circumferential distance.  360( becomes 2( radians; 180( becomes ( radians; 90( becomes (/2 radians; 45( becomes 2(/8 = (/4 radians, etc.

If we link these two associations – that between point and distance and that between distance and angle, we are ready to offer new definitions of the sine and cosine functions.  We say that the sine of an angle ( given in radians is the y-coordinate of the point on the unit circle corresponding to (.  For example, the sine of (/2, or sin((/2), equals the y-coordinate of the point (0,1) – that is, sin((/2) = 1.  The cosine of an angle ( given in radians is the x-coordinate of the point on the unit circle corresponding to (.  For example, the cosine of (/3, or cos((/3), equals the x-coordinate of the point (½, 3½/2) – that is, cos((/3) = ½.  These definitions of the sine and cosine functions allow one to evaluate both functions at any real number – negative or positive.  (A negative angle is one gotten by moving the radial line clockwise about the circle.)  If the radial line moves three times counterclockwise about the circle, it has moved through an angle of 3(2() = 6( radians.  One can evaluate sine at 1,000,000,000 = 1 billion radians.  To do this, one needs to determine the y-coordinate of the point on which one would land if one travelled about the circle through 1 billion radians of circumferential distance (having begun at the point (1,0)).  Tangent, cosecant, secant, and cotangent also may be evaluated over the whole real line where they are defined.  (For example, tangent = sine/cosine is not defined at (/2 since cos((/2) = 0 and one cannot divide by zero.)

Note that since x-coordinate2 + y-coordinate2 = 1, cos2( + sin2( = 1 for any angle (.  Now assume that cos(() ( 0.  By dividing each side of cos2( + sin2( = 1 by cos2(, we arrive at 1 + tan2( = sec2(.  Now assume that sin(() ( 0.  By dividing each side of cos2( + sin2( = 1 by sin2(, we arrive at cot2( + 1 = csc2(.

XXI.
The law of cosines

The law of cosines is a generalization of the Pythagorean Theorem.  The law states that for any planar triangle with side a opposite angle A, side b opposite angle B, and side c opposite angle C, c2 = a2 + b2 – 2ab*cos(C).  The following proof of the law of cosines is from Robert Adams’ Calculus: A Complete Course.



  
Allow the two triangles above to serve as representatives of all possible planar triangles.  The situation of the left triangle (triangle1) is such that the height can be measured by dropping an internal altitude.  The situation of the triangle on the right (triangle2) is such that it requires an external altitude.  Label the triangles’ angles A, B, and C by beginning with A at the left and moving clockwise.  Now give the sides opposite these angles the same names in lowercase.

The altitudes create right triangles to which we can apply the Pythagorean Theorem.  Triangle1’s altitude divides side b into two parts: b1 on the left and b2 on the right.  Triangle2’s altitude creates an extension bex to side b. The height of each triangle is h, the length of the altitude.  For triangle1, we have sin(C) = h/a, or a*sin(C) = h.  For triangle2, we have sin(C ) = sin(180( – C) = sin(( – C) [recall that ( radians equals 180º] = h/a, or a*sin(C) = h.  (We can say that sin(C) = sin(( – C) because the sine function stays positive on the upper half of the unit circle.)  We have a*sin(C) = h for both triangle1 and triangle2.

Now consider the following applications of the Pythagorean Theorem: c2 = h2 + (b – b2)2 [triangle1] and c2 = h2 + (b + bex) 2 [triangle2].  In triangle1’s case, cos(C) = b2/a; i.e., a*cos(C) = b2.  Therefore, we may write c2 = h2 + (b – a*cos(C))2 for triangle1.  In triangle2’s case, 

cos(180( – C) = cos(( – C) = -cos(C) [cosine is negative on the left upper half of the unit circle] = bex/a; i.e., -a*cos(C) = bex.  Therefore, we may write c2 = h2 + (b – a*cos(C))2 for triangle2.  Now our statements for triangle1 and triangle2 are the same.

Recall that h = a*sin(C) for both triangle1 and triangle2.  Therefore, we have 

c2 = a2sin2(C) + (b – a*cos(C))2 for triangle1 and triangle2.  Let’s F.O.I.L. the second term on the right side of the equation.  Our statement becomes c2 = a2sin2(C) + b2 + -2ab*cos(C) +a2cos2(C).  Let’s write the terms in a different order: c2 = a2cos2(C) + a2sin2(C) + b2 – 2ab*cos(C).  After factoring a2 from the first two terms on the right side of the equation, we have c2 = a2(cos2(C) + sin2(C)) + b2 – 2ab*cos(C).  Remember that cos2( + sin2( = 1 for any (.  By employing this substitution, we arrive at c2 = a2 + b2 – 2ab*cos(C).  The proof is complete.

XXII.
The law of sines

The law of sines, too, applies to any planar triangle.  The law states that for any triangle with side a opposite angle A, side b opposite angle B, and side c opposite angle C, sin(A)/a = sin(B)/b = sin(C)/c.  The following proof is from Robert Adams’ Calculus: A Complete Course.  Let’s employ our representative triangles from above, triangle1 and triangle2.  To prove this statement, we need to show only that sin(A)/a = sin(C)/c because triangle1 and triangle2 are general triangles.  If we show that, for any triangle, sin(A)/a = sin(C)/c, then we know that sin(B)/b = sin(C)/c, for any triangle.  Our labels are arbitrary – there are no differences among the sides or angles of a general triangle.

 
Observe in triangle1 that sin(A) = h/c and that sin(C) = h/a.  Isolating h in both equations, we have c*sin(A) = h and a*sin(C) = h.  Therefore, c*sin(A) = a*sin(C).  Dividing both sides by a*c, we have sin(A)/a = sin(C)/c.  Let’s consider triangle2.  sin(A) = h/c; then h = c*sin(A).  sin(180( – C) = sin(( – C) = sin(C) [sine stays positive on the upper half of the unit circle] = h/a; then h = a*sin(C).  We have that c*sin(A) = a*sin(C).  Dividing both sides by a*c, we have sin(A)/a = sin(C)/c.  The proof is complete.

XXIII.
Angle-addition, double-angle, and half-angle formulae

There are only a few angles –   0, (/6, (/4, (/3, (/2 radians and their other-quadrant analogs   – whom the sine and cosine functions map to memorable numbers.  The angle-addition formulae allow one to find the sine and cosine (and tangent) evaluations at less common angles by evaluating at only common angles.  The formulae are 

cos((–() = cos(()cos(() + sin(()sin(()

cos((+() = cos(()cos(() – sin(()sin(()

sin((–() = sin(()cos(() – cos(()sin(()

sin((+() = sin(()cos(() + cos(()sin(()
The following proof is from Robert Adams’ Calculus: A Complete Course.  If we prove the first is true, the others follow from that cos(-() = cos((), cos((/2 – () = sin(() and 

sin((/2 – () = cos((), and that sin(-() = -sin(().  Assume we have two angles ( and ( such that (( > ( .  We wish to evaluate cosine at the difference ((–().  Recall that cos(() and cos(() are the x-coordinates of the points on the unit circle corresponding to the angles ( and (, respectively.  Also, sin(() and sin(() are the y-coordinates of the points on the unit circle corresponding to the angles ( and (, respectively.  With these x- and y-coordinates, we can apply the Pythagorean Theorem (since the x-axis and y-axis meet in a right angle) to calculate the distance between (’s corresponding point and (’s corresponding point.  The squared distance is the following: (distance from p( to p()2 = (cos(() – cos(())2 + (sin(() – sin(())2.  After F.O.I.L.ing, we have (distance from p( to p()2 = cos2(() – 2cos(()cos(() + cos2(() + sin2(() – 2sin(()sin(() + sin2(() = 2 – 2cos(()cos() – 2sin(()sin(() [employing that cos2(() + sin2(() = 1 for any (]. 

If one were to draw a ray from the origin to p( and a ray to p(, the angle between the rays would be ((–().  Therefore, the distance between p(( and p( is the same as the distance between angle ((–(()’s corresponding point and angle zero’s corresponding point, (1,0).  (Imagine moving rigidly the angle spanned by the rays to p( and p( until the ray to p( is incident with the x-axis.)  By calculating the squared distance from p(-( to (1,0), we will have another expression for the squared distance from p( to p(.  Applying the Pythagorean Theorem again, we have that the (distance from p(-( to (1,0))2 = (cos((-() – 1)2 + (sin((-() – 0)2 = cos2((-() – 2cos((-() + 1 + sin2((-() = 2 – 2cos((-() [again we employ that cos2(() + sin2(() = 1 for any (].  Now we set our two final expressions equal: we have that 2 – 2cos(()cos(() – 2sin(()sin(() = 2 – 2cos((-().  Subtract 2 from each side and then divide each side by -2.  Then we have cos(()cos(() + sin(()sin((() = cos((-().  The proof is complete.

The double-angle formulae follow from the angle-addition formulae.  If we let ( = (, then the angle-addition formula for sin((+() gives us that sin(2() = sin(()cos(() + sin(()cos(() = 2sin(()cos(().  If we let ( = (, then the angle-addition formula for cos((+() gives us that cos(2() = cos(()cos(() – sin(()sin(() = cos2(() – sin2(().  By employing that cos2(() + sin2(() = 1, we can write two more expressions for cos(2(): 1 – 2sin2(() and 

2cos2(() – 1.

The half-angle formulae follow from these latter two expressions for cos(2().  After manipulating equations, we have that sin2(() = ½(1 – cos(2()) and that cos2(() = 

½(1 + cos(2()).  If we let 2( = (, we have sin2(½() = ½(1 – cos(()) and 

cos2(½() = ½(1 + cos(()).

XXIV.
Definitions of function and relation

A function is a rule which assigns each object in a domain (a set of objects) to an object in a range (a set of objects).  One might establish a function to assign every apple in a set of 10 apples to an orange in a set of 30 oranges.  Domains and ranges do not need to have the same size.  In mathematics, domains and ranges usually are number systems or subsets of number systems.  In calculus, domains and ranges always are constructed from the following options: (i) the real numbers, (ii) rays on the real-number line (the ray’s origin may be excluded), and (iii) double-bounded pieces of the real-number line (either bound may be excluded).  For example, the function f(x) = x2 assigns to each x in the real numbers the number x2 in the real numbers.  The set of all real numbers is both the domain and range.  The function f(x) = x½ assigns each number in the nonnegative real numbers to the number x½ in the nonnegative real numbers.  Both the domain and range of this function are origin-inclusive rays on the real-number line.  The domain of the function f(x) = 1/(x–2) is the set of all real numbers other than 2.  This domain is a union of two origin-exclusive rays.  The domain of the semicircle f(x) = (1 – x2)½ is the set of all x such that -1( x ( 1.  This interval includes both of its bounds. 

For each input, a function gives only one output.  A relation is a rule or expression (e.g., x2 + y2 = 1) which puts into relationships pairs of x’s and y’s but which is not constrained by the condition that each x is assigned to only one y.  x2 + y2 = 1 is the relation for the unit circle.  The value x = ½ is in a pair with y = 3½/2 and in another pair with y = -3½/2.  The graph of x2 + y2 = 1 fails the vertical-line test.  The vertical line x = ½ passes through two y-values.  The graphs of functions do not fail the vertical-line test.  A function assigns each x to only one y.


A function which is one-to-one (or injective) passes the horizontal-line test.  A one-to-one function is one which assigns two distinct outputs to each pair of distinct inputs.  The function f(x) = x2 is not one-to-one.  The horizontal line y = 9 crosses the graph twice.  f(x) = x2 assigns 9 to both -3 and 3.  3 and -3 are distinct, but 9 and 9 are not.  

XXV.
Composition of functions; inverse functions

Let f(x) = 3x and g(x) = 4x3.  We can compose these two functions: f(g(x)) = 3g(x) = 3*4x3 = 12x3 and g(f(x)) = 4*(f(x))3 = 4*(3x)3 = 4*27x3 = 108x3.  Note that f(g(x)) and g(f(x)) are not equal to each other.

Now let f(x) = x2 and let g(x) = x½.  Consider f(g(x)) and g(f(x)).  The domain of f(x) is all of the real numbers and its range is the nonnegative real numbers.  The set of nonnegative real numbers is both the domain and range of g(x).  Note that compositions make domains of ranges.  f(g(x)) could not fail to exist because the domain of f(x) is the set of all real numbers and any real range g(x) might produce would be a subset of the real numbers.  (In the case that the subset is smaller than the set of all real numbers, it is called a proper subset.)  However,  g(f(x)) could fail to exist if f(x) produces any negative real numbers because g(x) receives only nonnegative real numbers.  g(f(x)) exists because f(x) produces only nonnegative numbers.  Consider the case in which h(x) = -x and k(x) = x½.  k(h(x)) is undefined when x is a positive number.  We need to restrict h(x)’s domain to the nonpositive numbers to allow the composition k(h(x)) to work.

Let’s return to the example in which f(x) = x2 and g(x) = x½.  If x = 9, then g(x) = 3 and f(g(x)) = 32 = 9.  This composition assigns its inputs to themselves.  If x = -9, then f(x) = 81 and g(f(x)) = 81½ = 9.  This composition does not always assign its inputs to themselves.  However, if we restrict the domain of f(x) to the nonnegative real numbers, both f(g(x)) and g(f(x)) will assign their inputs to themselves.  When f(g(x)) = g(f(x)) = x, the two functions are inverse functions of each other.

Note that the restriction of f(x)’s domain to the nonnegative numbers makes f(x) a one-to-one function.  One-to-one functions (and only such) are invertible.  The parabola y = x2 fails the horizontal-line test, but its right branch passes the test.  If we reflect the right branch of the parabola y = x2 over the line y = x (this line passes through the first and third quadrants and intersects the origin at 45(-angles to both axes), we will have the graph of g(x) = x½.  Since the right branch of y = x2 passes the horizontal-line test, its reflection over y = x passes the vertical-line test and is therefore a function.  Reflecting a one-to-one function’s graph over the line y = x creates the graph of the inverse function by switching x and y; it makes the range into a domain and the domain into a range.  Inverse functions are assignments from y to x along the same routes the original function employed to assign x to y.  The inverse function of a one-to-one function f(x) is often notated: f -1(x).

XXVI.
The inverse trigonometric functions

The sine, cosine, tangent, cosecant, secant, and cotangent functions have inverse functions if we restrict domains properly.  Recall that sine and cosine are waves stretching infinitely far in both the positive and negative directions.  If we restrict sine’s domain to the real numbers between -(/2 and (/2 – including the endpoints – we create a one-to-one function.  If we restrict cosine’s domain to the real numbers between 0 and ( - including the endpoints – we create a one-to-one function.  We can restrict similarly the domains of tangent, cosecant, secant, and cotangent.

The inverse trigonometric functions are called arcsine, arccosine, arctangent, arccosecant, arcsecant, and arccotangent.  One might see them notated: sin-1(x), cos-1(x), tan-1(x), csc-1(x), 

sec-1(x), and cot-1(x).  Caution: The negative-one here indicates functional inversion and not rational inversion (i.e., reversing the denominator and numerator in a ratio, or fraction, to find a reciprocal).

Homework Problem Set 4

Topics

· (20) Trigonometric functions

· (21) The law of cosines

· (22) The law of sines

· (23) Angle-addition, double-angle, and half-angle formulae 

· (24) Definitions of function and relation

· (25) Composition of functions; inverse functions

· (26) The inverse trigonometric functions

Please solve the following problems without using a calculator.

20a.
What is the sine of the smallest angle in a 3-4-5-triangle?  What is the cosine of this angle?

20b.
A scalene triangle is one whose sides have distinct measures.  Consider the scalene triangle with sides of lengths 2, 3, and 4.  Find the cosine of any of its angles.  (Draw an altitude and determine the measure of (scenario 1) either of the two pieces into which the altitude divides the altitude-receiving side or (scenario 2) the full length of the extended altitude-receiving side.) 

20c.
Consider an isosceles triangle with sides of length 97, 97, and 38.  Find the cosine of both of the triangle’s angles using neither the law of cosines nor any angle-addition formula.

21a.
Given the following information about a triangle, employ the law of cosines to find the length of the missing side: one side has length 18, another side has length 11, and the angle between these two sides measures 60º.

21b.
Utilizing your knowledge of 30º-60º-90º- and 45º-45º-90º-triangles and the law of cosines, find the cosine of  75º.  (Hint: Draw a 30º-60º-90º-triangle so that its base angle is its 30º-angle.  Then rest a 45º-45º-90º-triangle atop the 30º-60º-90º-triangle so that the latter’s hypotenuse serves as the former’s leg.)
22a.
Utilizing your knowledge of 30º-60º-90º- and 45º-45º-90º-triangles and the law of sines, find the sine of 15º.  (Hint:  Draw a 45º-45º-90º-triangle.  Within this triangle, draw a 30º-60º-90º-triangle so that its base angle is its 30º-angle.)
23a.
Confirm your answers to 21b. and 22a. by using the angle-addition formulae.

23b.
Given that sin(α) = ⅓, find sin(2α).

23c.
Given that cos(α) = .85, find cos(½α).

23d.
Give a formula for sin(3α).

23e.
Estimate the cosine of 1º.

23f.
In a large city, a bicycle-riding messenger rests at her headquarters (HQ) planning her next ride.  She must pick up a package 1.4 miles from HQ and deliver it 0.9 miles from the pick-up site.  She plans to return to HQ afterward to eat lunch with a friend.  She will ride in a straight line between each site and turn 22.5( at her first stop.  The clock now reads 10:50 a.m. and she will depart in 5 minutes.  If her riding pace averages 20 m.p.h. and she spends 5 minutes at the pick-up site and 10 minutes at the delivery site, at what time will she arrive for lunch?

22b.
Consider a triangle with a side of length 10 opposite angle α and a side of length 7 opposite angle β.  If sin(α) = .6, sin(β) = .3, find the length of the third side.  (Hint: This problem requires the law of sines and an angle-addition formula.  Also, recall that sin(180º – θ) = sin(θ).)

24a.
What is your age? is a question usually answered inaccurately.  The inaccuracy is attributable to the employment of a function.  Describe the function and give its domain and range.

24b.
If a relation passes the vertical-line test, is it a function?

25a.
If f(x) = log10x and g(x) = x5, estimate f(g(4).

25b.
Is y = x3 an invertible function?

25c.
Is y = x3 + x2 + x + 1 an invertible function?

25d.
What is the inverse function of f(x) = 6x4 (x≥0)?

26a.
Restrict the domain of sin(θ) to the values between and including 0º to 90º to create the arcsine function.  What is arcsin(½ )?  What is arcsin(1)?

26b.
Restrict the domain of tan(θ) to the values between and including –90º and 90º.  According to this restriction, find arctan(1).
From Topic 27 on Graphing - GRAPHING the sine, cosine, and tangent functions


Recall that sinθ = cos((/2–θ).  The graphs of the sine and cosine functions have the same (rather than similar) shape, but each is shifted horizontally from the other’s situation in the plane by π/2 radians.  The graphs of sine and cosine are perfectly undulating waves.  They exhibit the purest form of two-dimensional wave activity.  With proper adjustments to amplitude, period, and horizontal situation in the plane, one can add together sine waves (or cosine waves) to produce any kind of wave within a closed stretch of the x-axis.  Unaltered sine and cosine waves move between y = -1 and y = 1 and exhibit one wave (i.e., one peak and one valley) every 2π radians (360º).  The domain of the sine and cosine functions is the set of all real numbers.


Recall that tanθ = sinθ/cosθ.  We know, therefore, that the domain of the tangent function is the set of all real numbers other than those that would force division by zero.  In other words, tangent’s domain includes all real numbers other than θ such that cosθ = 0.  The angles θ between 0 and 2π such that cosθ = 0 are π/2 and 3π/2.  We need a way to express succinctly the set of all θ throughout the real numbers such that cosθ = 0.  The expression {θ((: cosθ = 0} (read this as “the set of θ in the real numbers such that cosθ = 0”) certainly suffices but does not imply a method by which one can compute any such angle.  If one looks to x-stretches other than the one from 0 to 2π, including negative stretches, one will begin to notice that angles at which cosine equals zero are odd multiples of π/2.  The full set is {…-7π/2, -5π/2, -3π/2, -π/2, π/2, 3π/2, 5π/2, 7π/2, …}.  We can express this set non-elliptically: {θ = (2k+1)π/2: k(Z}.

Now we must determine how the graph of tangent behaves at such θ.  Our discussion of division by zero in section XIII showed that it creates infinite behavior – either negatively or positively infinite or both.  Consider tangent at θ = π/2, for example.  At θ = π/2, sine reaches its apex, 1.  Therefore, within small neighborhoods about θ = π/2, sine remains positive.  As we move from θ = π/2 to the right (i.e., toward π), cosine moves from zero toward negative-one through arbitrarily small values.  We have then that tangent at θ that are close to but to the right of π/2 will be negative and great.  On the left side of θ = π/2, cosine is arbitrarily small and positive.  Therefore, at θ that are close to but to the left of π/2, tangent will be great and positive.  We see thus that tangent exhibits both negatively and positively infinite behavior at θ = π/2.  

Now consider θ = 3π/2.  At θ = 3π/2, sine reaches its nadir, -1.  Within small neighborhoods about θ = 3π/2, sine remains negative.  As θ passes from left to right through 3π/2, cosine passes through first arbitrarily small negative values, then zero, and then arbitrarily small positive values.  Tangent therefore exhibits positively infinite behavior to the left of 3π/2 [a negative number divided by a negative number yields a positive number] and negatively infinite behavior to the right of 3π/2.  Again, we see infinite behavior of two kinds at one point.  Moreover, in both cases we have examined, we see positively infinite behavior on the left and negatively infinite behavior on the right.  Note that every pair of consecutive angles θ = (2k+1)π/2 and θ = (2k+3)π/2 contains one at which sinθ = 1 and one at which sinθ = -1.  Hence, by considering θ = π/2 and θ = 3π/2, we covered all [of the two] cases.   Now, by observing that sine – and therefore tangent – has zero value at all points exactly halfway between consecutive θ in {θ = (2k+1)π/2: k(Z}, we come to see that within every interval whose open-endpoints are a pair of consecutive angles in {θ = (2k+1)π/2: k(Z}, tangent exhibits the same graph.  (Tangent’s period is π rather than sine’s and cosine’s 2π).  From left to right, this graph rushes up from great negative values, crosses the x-axis at the interval’s midpoint, and surges up to great positive values.
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