Amherst College Moss Quantitative Center’s Precalculus Review Booklet, 2nd edition
PAGE  
5
Amherst College Quantitative Skills Center’s Precalculus Review Booklet, 2nd edition (December 2003)

In the following sections, I try to ease a precalculus student’s entry into a formal introductory course in differential and integral calculus.  I write on and around fundamental concepts and methods that might be introduced only strictly formally or with unforgivingly brief description in an ordinary setting.

Topics 

· (28) Estimating the slope of a function at a point  

· (29) The concept of a limit  

· (30) The definition of the derivative of a function  

· (31) The general power rule (with a proof for the positive integers)  

· (32) What is the general antiderivative of f(x) = 1/x?  

· (33) The derivative of ex  

· (34) The connection between antidifferentiation and the area under a curve  

XXVIII.
The slope of a function at a point

The slope of a line is constant.  If we choose any two points p1 and p2 on a line and slide from each along the line by one unit of positive x-movement to new points p1new and p2new, we will observe that the vertical change from p1 to p1new and that from p2 to p2new are the same (in sign and magnitude).  That we specified unitary positive x-movement allows us to say that the signed change in y we observe in both cases is the slope of the line.  Only lines have constant slopes.  The operator only in the previous sentence operates among all possible functions and relations.  For example, if we allow t to take all real values, the set of points (x, y, z) = (3t+2, 4t+5, 5t+7) is a line in three-dimensional space.  Its slope in three-space is given by the ordered triple <3, 4, 5>, which is composed of three constants.  The slopes of lines in two-space (i.e., the Cartesian plane) are defined by two numbers, but usually we express these two numbers as one number by employing fractions.  E.g., if we allow t to take all real values, y = (π/2)x + 5 may be expressed as (x, y) = (2t, πt+5), whose ordered pair of slopes is <2, π>.

Consider the parabola, whose leading coefficient of 2 – rather than the line’s unwritten leading coefficient of one – suggests that its complexity among smooth functions lies immediately above that of the line.  [I specify the adjective smooth because one can imagine a function created from line segments with distinct slopes.  Such a function would have pointed (not smooth) elbows at the sites at which two different line segments meet.  Certainly this segmented function represents an increase in complexity from that of a line.  However, the increase in complexity achieved by stringing together line segments is extrinsic.  We create the new complexity, and its nature is that of a collection.  The pieces collected, though, retain their intrinsic complexity, which is linear.]  If we draw a line segment from the origin to the point (1,1) and, on the same plane, draw a segment of the parabola y = x2 from the origin to (1,1), we see clearly that the parabola exhibits more complexity – less constrained behavior.

From a pragmatic perspective, we observe that the parabola’s increased complexity is tantamount to its taking an unnecessarily long path.  When we wish to walk a short distance in a place in which the straightest path is unobstructed, we take that path – a linear path.  To execute this walk, we might focus visually on the object or spot of ground or floor at which we would like to arrive, and walk steadily toward it with our eyes remaining focused on it.  In this scenario, our eyes and feet stay together.  If we were to take a parabolic path, and to keep eyes with feet (with distance of vision held to the distance  –  either arc- or straight-line-  –  remaining between walker and destination), our eyes would not be focused on the destination for any of the interim.  Only at the moment of arrival would our eyes have our desired destination as their central focus.  The parabolic path would have us look at a new destination point at every moment.  In other words, the slope of our path would change continuously.  However, if at any point we decided to abandon parabolicity and continue in a straight line, we could assign a slope to our parabolic path at the moment of abandonment by measuring the slope of the line along which we walk our new path.

In this manner, we can extend the idea of slope to other functions (and relations) other than lines.  We have a clear method for determining manually the slope of a functional curve other than a linear curve at a particular point.  Graph a segment of the curve that contains within or at its end the desired evaluation point, rest your drawing device on the curve at a starting point a bit away from the evaluation point, trace the curve from this starting point to the desired point, continuing at the latter into the linear path given by the shape of the curve.  Then measure the slope of the line.  We have a great contrast, though.  The curve is defined by a function, which has a concise rule (y = f(x)) by which we can calculate any y given an x.  To calculate the slope of a line, we write a line’s concise rule in slope-intercept form (y = mx + b) and read m.  However, if we are dealing with a function other than a line, we have only – at this stage in our discussion – a pen-and-paper method for determining slope at a point.  We have a method and not a rule.  We want a rule.  [We can find the slopes at a number of points, plot the slopes found as yslope-values against the x-values of the points at which slopes were sampled, and try to fit a known curve to these points (x, yslope).  This technique is a refining extension upon our estimating method, but still we do not have a rule (i.e., a statement that gives exact slopes rather than estimations.)]  The concept of a limit will help us toward a rule.

XXIX.
The concept of a limit

Consider the infinite list, or infinite sequence, (n+1)/n for all n from 1 to positive infinity 

(n = 1, 2, 3, 4, 5,…).  Toward what number is this list heading?  The list reads 2/1, 3/2, 4/3, 5/4, 6/5, 7/6, etc., which equals 1 + 1/1, 1 + ½, 1 + ⅓, 1 + ¼, 1 + 1/5, 1 + 1/6, etc.  Each member of the sequence is equal to 1 plus a proper fraction (i.e., a fraction whose magnitude is less than 1) whose numerator is 1 and denominator is n.  This proper fraction clearly shrinks as one moves through the list.  Moreover, it shrinks without boundary (other than that presented by absence of magnitude; i.e., zero).  Therefore, we say that the limit of this sequence is 1 + 0, or 1.  Note that the limit value is never achieved by the sequence.  (I.e., for all n, (n+1)/n is strictly greater than 1.)  The limit gives us information about the movement (not the achievements of the sequence) and this information is twofold: the sequence moves toward but never reaches 1 (i.e., 1 is a strict bound), and 1 is an extreme bound on the movement; i.e., 1 is the greatest of all of the sequence’s lower bounds.  The value ½, for example, is a strict lower bound (all sequence members are greater than ½) but not an extreme bound because 1, another lower bound, is greater than ½.

(The following is a formal definition of an extreme bound (for the case of this sequence, but the definition is generalizable):  An extreme bound, B, has the property that for any distance k, we can find an n such that |[(n+1)/n] – B| (the absolute difference between a particular member of the sequence and B) is less than k.  If we choose k to be ¼, for example, we see that B cannot be ½ because |[(n+1)/n] – ½| is always greater than k = ¼.  The k-test, one might say, shows us we need to try another B.  Only B = 1 acts as an extreme lower bound on the movement of the sequence.) 

An aside on an important sequence

Now consider the infinite sequence [(n+1)/n]n.  Does this sequence have a limit?  If we were to employ techniques developed in the course of studying convergent and divergent sequences, we could be certain.  However, without such techniques, we can calculate a few terms (to put the sequence in motion) to try to guess whether the sequence is coming upon a boundary.  In cases other than the most straightforward ones (e.g., 1/n or 1/(n2)), our guess likely never will rise to certainty without our employment of advanced techniques.  (For example, the growth of the series 1/n, which is the sequence of sums of terms of the sequence 1/n (i.e., 1, 1 + ½, 1 + ⅓, etc.,), slows but never enough.  This series does not have an upper bound – it never converges.)  Following are exact values for the first ten terms of the sequence [(n+1)/n]n (Expressions of manual calculations for the fifth through tenth terms are abbreviated.): 

(1) 21 = 2.  (2) (3/2)2 = 9/4 = 2¼.  (3) (4/3)3 =  64/27 = 2 + (10/27).  (4) (5/4)4 = (52)2/(42)2 = 252/162 = 625/256 = 2 + (113/256).  (5) (6/5)5 = [(62)2· 6)]/(53· 52) = (362·6)/(125·25) = (1296·6)/3125 = … = 7776/3125 = … = 2 + (1526/3125) < 2½.  (6) (7/6)6 = (73)2/(63)2 = 3432/2162 = … = 117649/46656 = … = 2 + (24337/46656) > 2½.  (7) (8/7)7 = 

[(83)2·8)]/[(73)2·7] = (5122·8)/(3432·7) = … = 2097152/823543 = … = 2 + (450066/823543).

(8) (9/8)8 = 98/(23)8 = [(92)2]2/224 = (812)2/[(210)2(24)] = 65612/[(10242)(16)] = … =  43,046,721/16,777,216 = … = 2 + (9,492,289/16,777,216).  (9) (10/9)9 = 109/(93)3 = 109/7293 = = 109/(700 + 29)3 [denominator to be found by binomial expansion] = … = 1,000,000,000/387,420,489 = … = 2 + (225,159,022/387,420,489).  (10) (11/10)10 = 

(10 + 1)10/1010 [numerator to be found by binomial expansion] = … = 25,937,424,601/10,000,000,000 = 2.5937424601.

We can rationally surmise from the behavior of the first ten terms that the sequence is convergent.  Observe that the sequence moves about 0.5 in its first five terms and about 0.1 in its next five terms.  If we extrapolate the pattern suggested by these two blocks of five, we will be led to guess that the sequence converges to about 2.63.  This sequence does converge, but it stretches far past the apparent roadblock at 2.63.  It stretches to an irrational number, called e, that is approximately equal to 2.718.  (I determined this by employing the power series for e1, which converges quickly.)  A rational number approximately equal to e is 19/7.  [( is approximately equal to the rational number 22/7.]  This sequence settles into its limit value slowly, defying – stretching the bounds of – our extrapolations.  Of course, we can improve our extrapolative guesses by increasing the number of terms on which we base them.  However, if we constrain ourselves to manual calculation, we see quickly that moving beyond ten terms is prohibitively tedious.  Once one has some facility with calculus and series, one can show that this sequence converges to a value with special properties.  Below we will see that e has a special property.  Once one understands this property and has worked with series a bit, one can use power series to find a great approximation to e in a few minutes. [end of aside]
We have considered the limit of (n+1)/n (and, in an aside, the limit of the same value raised to the nth power) as n climbs without bound through the natural numbers, {1, 2, 3, …}.  Now consider the limit of (x+1)/x as x moves from 1 to positive infinity through the real numbers.  Although the limit value is the same, we cannot express (x+1)/x as a sequence.  Sequences are lists whose list-nature is given to them by the set of natural numbers, which is the purest list, the essence or backbone of all lists.  Lists are composed of isolated elements, but the set of real numbers, the analogous backbone of the set of numbers (x+1)/x as x goes toward positive infinity, cannot be listed – they are uncountable.  As the completion of its subsets, the set of real numbers does not have gaps.  Contrast the real with the rational numbers.  The rational numbers are packed infinitesimally close together, but between any two rational numbers are infinitely many non-rational numbers.  In other words, the rational numbers do have gaps.  The real numbers are non-isolable, seamless, continuous.  The set of real numbers is the purest continuum.  Real-number continuity is the essence of all functions whose domains are composed of stretches of the real number-line.

Now consider the limit of (x+5) as x moves through the real numbers toward x = 2.  In this example, x moves toward a finite value – not infinity.  Picture the graph of y = x +5 and imagine moving from both sides toward the point whose x-coordinate is 2.  From both the left and right sides, we slide without obstacle toward the y-value (2 + 5) = 7.  That the left- and right-sided limits (the one-sided limits) equal each other gives us that 7 is a two-sided limit.  In some cases, though, the one-sided limits will be distinct.  Such distinction appears where there is a discontinuity in the behavior of a function.  Discontinuities are points at which either abrupt breaks occur (e.g., in the case of a piece-constructed function in which two segments’ adjacent ends do not join) or infinite behavior occurs.  The function y = 1/x exhibits distinct infinite limit-behavior at x = 0.  (One uses the compound word limit-behavior here because limits are finite numbers.)  Approaching x = 0 from this function’s right side gives arbitrarily large positive values, and approaching x = 0 from its left side gives arbitrarily large negative values.  Although distinct one-sided limits and limit-behaviors occur at discontinuities, one cannot claim the converse; i.e., that discontinuities always produce distinct limits and limit-behaviors.  An example of a discontinuity that disproves the converse is that at x = 0 in the function y = 1/x2.  The left and right approaches both yield arbitrarily large positive values.  Another example is the discontinuity at x = 1 in the function y = (x2 – 1) / (x – 1).  This function is the line y = x + 1 with a punctual deletion at x = 1: When x is a value other than 1, that x2 – 1 equals (x + 1)(x – 1) gives that (x2 – 1) divided by (x – 1) equals (x + 1).  At x = 1, though, the function yields the indeterminate value 0/0, which, despite having an empty denominator, does not have infinite magnitude because its numerator is empty, too.  The point (1, 2) on the line y = x + 1 is simply absent.  Therefore, right and left approaches toward x = 1 give the same value (y = 2).  Limits exist whether destination points are present or not.

We now have the material from which to build a method to give us the exact (rather than estimated) slope at a point on a function other than a line.  Let us work with y = x2 and its point (2, 4) to develop a generalizable method.  Draw a line segment from the point (2, 4) to an arbitrary other point, (2+h, (2+h)2).  (We use a variable – in this case, the conventional h – to express this arbitrariness.)  For small h, the slope of this line segment is a good estimate of the slope of the parabola at (2, 4).  The limit of the slope of this line segment as h shrinks to zero is the slope of the parabola at (2, 4).  The limit concept allows us to collapse an ordinary one-dimensional object (the line segment between the points (2, 4) and (2+h, (2+h)2)) into an infinitesimal one-dimensional object.  Despite that such an object occupies only one point, it carries information about relationships among points [plural].  All of the possible estimates of the slope of the parabola at (2, 4) reach their fruition in the slope of the infinitesimal line segment.  Let us calculate this slope, the end of estimation: The slope of the line segment between (2, 4) and (2+h, (2+h)2) is (y2 – y1)/(x2 – x1) = [(2+h)2 – 4] / [(2+h) – 2].  After distribution, we have [(4 + 4h + h2) – 4] / [(2+h) – 2].  After additive cancellation, we have 

(4h + h2)/h.  After multiplicative cancellation, we have (4+h)/1, or 4 + h.  The limit of the quantity 4 + h as h shrinks to zero is 4.  In other words, the slope of the parabola y = x2 at (2, 4) is 4.

With limits, we see the introduction of an important sophistication into mathematics: we move beyond static ideas and those that involve simple (non-composite) movement to ideas that involve composite movement.  Examples of static ideas are the formula for the area of a triangle (½bh) and the Pythagorean Theorem (c2 = a2 + b2).  The following problem involves non-composite movement: Assume that one side of a triangle expands continuously at 4 cm/second and that the altitude to that side, its correlative altitude, expands continuously at 5 cm/second.  A momentary measurement at time tsnapshot shows that the expanding side has magnitude 16 cm and that its correlative altitude has magnitude 12 cm.  Find the area of the triangle at ten seconds after tsnapshot.  The expansions of the base and height occur simultaneously but independently of each other.  The two movements, therefore, cannot be regarded as a unit – as a composed movement [singular].  Each movement fails to be a part of a composite movement, but either may be a whole composed movement.  (In this example, both movements are non-composite.)

Now let us alter the problem to show the difference between non-composite and composite movement.  Assume that one side of a triangle expands continuously and that its rate of expansion increases continuously at 1 cm/second per second (1 cm/second2).  Also, assume that this side’s correlative altitude expands continuously and that its rate of expansion increases continuously at 2 cm/second per second (2 cm/second2).  Given that momentary measurements of size and rate at tsnapshot show that (1) the side of the triangle has magnitude 16 cm and expansion-rate 4 cm/second, and that (2) its correlative altitude has magnitude 12 cm and expansion-rate 5 cm/second; find the area of the triangle at ten seconds after tsnapshot.  Rates of expansion now have their own rates of expansion.  Movement has a composed nature.  In other words, one movement is embedded in, or posited upon, another movement.  Note that we could embed movement endlessly.  For example, one might have a size-magnitude that increases continuously from zero-size at 3 cm per second per second per second per second per second 

(3 cm/second5).  Limits allow us to analyze composite movement by decomposing it – layer by layer – into less complex movement (or, at least, into subtler movement – many functions decompose into equally or more complex functions).  Linear movement is the simplest movement because it is posited upon – it is the movement of – a static quantity.    

XXX.
The definition of the derivative of a function


In the previous section, we developed a generalizable process for finding a non-linear function’s slope at a particular point by working with point (2, 4) on y = x2.  Although never made explicit, the generalization, I hope, was clear: Calculate the slope of a line segment between a given point and an arbitrary other point that has been expressed as a continuously variable difference from the given point.  Then find the limit of the slope of this line segment as it recedes into the given point.  Let us apply this general method to find a function gives the slope of y = x2 at any of its points.  To find the slope of y = x2 at any of its points is to find the slope at the general point (x, x2).  The point (x + h, (x + h)2) is an arbitrary other general point if h does not equal zero.  The slope of the line segment between these two points is given by the expression [(x + h)2 – x2] / [(x + h) – x)].  This expression equals 

(x2 + 2hx + h2 – x2) / (x + h – x), which equals (2hx + h2) / h, which equals 2x + h.  As h shrinks to zero, this last expression becomes 2x.  Hence, the slope at any point (x, x2) on y = x2 is given by the function y = 2x, the derivative function of y = x2.  (Note that the derivative (function) of y = x2 is a line.  Quadratic (or parabolic) movement is linear movement posited upon linear movement.)

Let us state symbolically our general method for finding derivatives.  Consider first, though, that not all functions permit derivatives.  Only continuous functions permit derivatives, but they may have points at which slope is infinite or at which there are two distinct but reasonable slopes.  An example of the former situation is that of the points (-1, 0) and (1, 0) on the semicircle y = (1 – x2)½.  At these points, the function has curved to become strictly vertical; i.e., the slopes at both points are infinite.  An example of the latter situation is that of the point (0, 0) on y = |x|.  To the right of (0, 0), y = |x| is the function y = x; and to the left of (0, 0), 

y = |x| is the function y = -x.  However, the point (0, 0), which is on y = x and y = -x joins the two functions, and the conjunction is not smooth.  One approaches (0, 0) from the right along a line whose slope is always 1 and from the left along a line whose slope is always -1.  Therefore, at the point (0, 0), y = |x| has both slopes.  The derivative function of y = |x|, though, cannot have two values at x = 0 because it would fail the vertical-line test; i.e., it would fail to be a function (at that point, at least).  Hence, y = |x| does not permit an unqualified derivative.  However, if we partition the function with the vertical line x = 0 and exclude the point (0, 0) from both resulting branches, we will have two functions that do permit slope-finding everywhere.


The following is the symbolic statement of the derivative of a derivative-permitting function: limh→0 [the limit as h goes to zero of] [f(x+h) – f(x)]/h.   

XXXI.
The power rule (for natural powers)

Manually computing derivatives of functions can be tedious and, in some cases, not directly executable (e.g., finding the derivative of sin(x) requires some side explorations).  Finding derivatives of polynomial functions (e.g., y = x3 + 2x2 + 1) is more straightforward than finding those of any other class of functions, but it can be mechanically and organizationally demanding when exponents rise above 3.  Such demands lead one to desire to create a complexity-reducing algorithm, a method that bypasses the extensive symbol-manipulation required by the computing of derivatives of quartic, quintic, sextic, etc. functions.  Let us devise such an algorithm.

Each term of a polynomial function can be differentiated (i.e., processed to reveal its derivative) separately.  For example, the derivative of y = x2 + 3x + 4, which is the sum of the functions y = x2, y = 3x, and y = 4, is the sum of the derivatives of y = x2, y = 3x, and y = 4.  This property of derivatives follows directly from the analogous property of limits: if f(x) and g(x) are continuous at x = a (i.e., there is neither a punctual deletion nor infinite functional behavior at x = a), then limx→a f(x) + g(x) = f(a) + g(a).  (For example, limx→7 2x2 + x = 2·72 + 7.)  However, if either function, say f(x), does have a punctual deletion at x = a, one easily can insert the deleted point to create a continuous function.  The resulting function, which we might call fnew(x), is such that limx→a f(x) + g(x) = fnew(a) + g(a).  Deletions do not affect separability.  Also, if either function, say g(x), does exhibit infinite behavior at x = a, then the limx→a f(x) + g(x) will have infinite magnitude (or zero-magnitude in the case that f(x) = -g(x)).  These examples are directly applicable to differentiation because the definition of the derivative creates a function of h that either has a punctual deletion or exhibits infinite behavior at h = 0.

One can remove the coefficient of any term of a polynomial before computing its derivative – provided one remembers to replace it after differentiation (i.e., affix it to the derivative).  In the following, working with y = 7x2, I give a chain of reasoning to show the legitimacy of removal (and later replacement) of coefficients in the process of differentiation: the derivative of y = 7x2 is given by the expression limh→0 [7(x+h)2 – 7x2)]/h, which equals 

limh→0 7[(x+h)2 – x2)]/h [I factored 7 from the numerator.], which equals 7·limh→0 [(x+h)2 – x2)]/h [I factored 7 from the limit expression.] because the shrinking of h does not affect constant terms.  [Note that x too is a constant in the definition of the derivative.  Only h moves.  However, one never can factor an x from the numerator of the definition-given quotient one uses to find the derivative of a polynomial function because every such numerator contains a term that does not include x (the h-term).]

Our abilities to differentiate a polynomial function’s terms separately and to set aside any such term’s coefficient before differentiating it, allow us to focus our algorithm-producing energy on y = xn (for any natural n), a general monomial whose coefficient is 1.  We know the derivative of f(x) = x1, the line whose slope, and therefore derivative, is 1 (or 1x0; recall that x0 = 1).  Also, we computed above that the derivative of f(x) = x2 is 2x.  Now let us compute the derivative of f(x) = x3.  By the definition of the derivative, we have that f΄(x) (f-prime-of-x, the derivative of f(x)) equals limh→0 [(x+h)3 – x3]/h.  The numerator, (x+h)3 – x3, is a difference of two cubes (see section XII).  After factoring the numerator, we have limh→0 [[(x+h–x)][(x+h)2 + (x+h)x + x2]]/h.  After fully distributing the terms in the numerator’s second bracketed expression (and collapsing x+h–x to h in the first term), we have limh→0 [(h)(x2 + 2hx + h2 + x2 + hx + x2)]/h.  Now we may cancel the h in the denominator with the h in the numerator.  (We insert the deleted point at h = 0 by performing this cancellation.)  Now we have limh→0 x2 + 2hx + h2 + x2 + hx + x2.  Without a punctual deletion, we are free to evaluate the expression x2 + 2hx + h2 + x2 + hx + x2 at h = 0.  Evaluation at h = 0 gives that f΄(x) is x2 + x2 + x2 = 3x2.

Let us compute the derivative of f(x) = x4 before posing a possible algorithm and trying to show its legitimacy.  By definition, f΄(x) equals limh→0 [(x+h)4 – x4]/h, the numerator of which we may factor by applying the formula for the difference of two squares.  After factoring, we have limh→0 [(x+h)2 – x2][(x+h)2 + x2]]/h.  After fully distributing the numerator’s terms, we have limh→0 [(x2 + 2hx + h2 – x2)(x2 + 2hx + h2 + x2)]/h.  After gathering like terms, we have

limh→0 [(2hx + h2)(2x2 + 2hx + h2)]/h.  After factoring an h from 2hx + h2 and canceling it with the denominator’s h, we have limh→0 [(2x + h)(2x2 + 2hx + h2)].  Now that we have closed the hole at h = 0, we may evaluate the remaining expression at h = 0 to find  f΄(x): (2x)(2x2) = 4x3.

Our list of derivatives shows that x differentiated to become 1x0, x2 became 2x, x3 became 3x2, and x4 became 4x3.  In each case, the exponent descended to become a coefficient and was replaced by the number one less than itself.  Let us propose that this observation applies to all functions f(x) = xn for natural n.  In symbols, our proposal is that the derivative of xn is nxn-1 (n(N).  With a bit of combinatorics, the study of ways of counting objects and combinations (or assemblies) of objects, we can prove this assertion.

Let n be a positive integer.  Consider the product (a+b)n = (a+b)(a+b)(a+b)·…·(a+b) [n (a+b)’s] .  In each set of parentheses there are two objects: a and b.  In other words, each set of parentheses encloses a binomial.  If we fully distribute these binomials (according to the distributive property) but do not collect like terms, we will have 2n terms in the resulting polynomial.  For example, (a+b)2 = (a+b)(a+b) = a2 + ab + ab + b2, a polynomial with 22 = 4 terms.  To distribute (a+b)n fully, order the n binomials (a+b)(a+b)(a+b)·…·(a+b) [perhaps with natural subscripts; for example, (a+b)1(a+b)2·…·(a+b)n] and pass from left to right through them, navigating an n-stop path that lands in each binomial on either a or b.  Repeat this trip again and again so that each path taken is different from all previous paths.  Each of the 2n trips possible produces a term ajbk such that j and k are nonnegative integers (0, 1, 2, 3,…,n) whose sum is n.  The sum of j and k is n because each trips consists of n stops and each stop is a landing on a variable-to-the-first-power: n·1 = n.  

Our taking all possible trips guarantees that we will produce an ajbk for every pair of nonnegative j and k such that j + k = n.  That we order the n binomials before commencing trip-taking allows us, though, to produce more than one ajbk for a particular pair of nonnegative j and k.  For example, if n = 3, a2b1 will occur three times: a·a·b, a·b·a, and b·a·a.  How many terms anb0 = an are possible?  This question asks how many paths begin with a and consist of only a’s.  There is only one such path.  By the same reasoning, we may say that there is only one term a0bn = bn.  How many terms an–1b1 are possible?  On each trip we make n stops, only one of which can be upon the lone b.  However, there are n different binomials in which one might land on b.  Therefore, our exhaustive list contains n terms an–1b1 (and, by symmetry, n terms a1bn–1).  For pairs of j and k such that both are greater than one, counting is more difficult.  There is a pattern, however, which one can discern by working with the full distributions of (a+b)n for small n.  To prove our assertion, though, we need only the counts we have already.   Let us return now to our discussion of the derivative of y = xn.

The derivative of xn is limh→0 [(x+h)n – xn)]/h.  We know from above that (x+h)n = 

(xn + nxn-1h + c2xn-2h2 + c3xn-3h3 + … + cn–2x2hn–2 + nxhn–1 + hn), whose coefficients c2 through 

cn–2 we do not need to determine.  Therefore, (x+h)n – xn equals nxn-1h + c2xn-2h2 + c3xn-3h3 + … + cn–2x2hn–2 + nxhn–1 + hn.  Notice that every term of this expression contains a factor of h1.  Factor this h from the (numerator’s) expression and cancel it with the h in the denominator of the quotient.  We now have limh→0 nxn-1 + c2xn-2h1 + c3xn-3h2 + … + cn–2x2hn–3 + nxhn–2 + hn–1.  Having closed the punctual deletion present at h = 0 in the original limit expression, we may evaluate freely at h = 0.  Every term in the current expression beyond the first contains (still) a factor of h1.  Therefore, we are left after evaluation with only the first term, nxn–1.  Hence, the derivative of y = xn is nxn–1.  This statement, the power rule, applies to all natural numbers and negative natural numbers n (i.e., all integers other than zero), but I have proved its truth for only positive n.  Certainly the power rule holds for a power of zero.  Note, though, that its holding for zero excludes functions cx-1 for nonzero c from the set of functions producible by application of the power rule. 

[With the case for nonzero natural numbers shown, we are steps away from proving the case for negative naturals.  If we show the case for negative naturals, we then can show easily (by using inverse functions) that the power rule holds for reciprocals of nonzero natural and negative natural numbers (i.e., for nonzero integers).  Next we employ the definition of the derivative to determine the derivative of the product of any two functions.  With this rule, the product rule, we can use our result for reciprocals of nonzero integers to prove by induction that the power rule holds for all rational numbers.  Then we can prove the case for nonzero irrational numbers by regarding them as infinite decimals and extending our case for rational powers, which we would have regarded as sums of finitely many reciprocals of nonzero integers, to a case for infinite but convergent sums of rational powers.  Our desired result is the limit of a chain whose links are rational numbers, for which we would have shown already the truth of the power rule.  We would end by noting that the set of real numbers is the union of the sets of rational and irrational numbers, and that, hence, the power rule holds for all nonzero real numbers.  Once we learn the derivative of a logarithmic function, though, we will be able to use logarithmic differentiation to establish directly and quickly that the power rule holds for all nonzero real numbers.]

XXXII.
The general antiderivative of y = 1/x?

Differentiation is the process of finding derivatives.  Antidifferentiation reverses the process of differentiation.  It is the process of  finding functions whose derivatives are a given function.  For example, that 2x is the derivative of x2 tells us that x2 is an antiderivative of 2x.  Note that I used the word an and not the word the before antiderivative.  Infinitely many functions have 2x as their derivative.  These functions are x2 + r in which r may be any real number.  In each such function, r is a constant, and all constants’ derivatives are zero.  (Constants do not move.  They do not have a rate of change, or derivative.)  Let us consider the issue graphically: y = x2 + 3 is the parabola y = x2 shifted upward in the Cartesian plane by 3.  Shifting y = x2 upward does not alter its shape.  We know that at each x, the two parabolas will have the same slope.  In other words, their derivatives are the same.  (An horizontal shift, though, despite that it would preserve the shape of y = x2, would change the parabola’s derivative because it moves the independent variable.  The change, however, is not fundamental.  The derivative of y = (x – 2)2, for example, is simply 2(x – 2).)  

The power rule leads us directly and quickly to the derivative of y = xr for any real r.  Recall, though, that all functions cx-1 for nonzero c are excluded from the set of functions producible by application of the power rule.  Therefore, we know we might encounter a problem if we try to antidifferentiate x-1 by reverse application of the power rule.  Antidifferentiating by reverse application of the power rule requires that we undo the two operations called for by the power rule: making the exponent a coefficient and installing a new exponent that is 1 less than the old.  Undoing these operations requires that we install a new exponent one greater than the one given and that we divide out the effect of the new exponent’s unwritten status as coefficient of xr.   In other words, we note that xr equals [(r+1)xr]/(r+1), the bracketed portion of which is the product of an application of the power rule to xr+1.  Thus, we have that reverse application of the power rule to a function xr in which r ≠1 yields the set of functions xr+1/(r+1) + C in which C may be any real number.  This set of functions is the general antiderivative of xr for r ≠1.  We see now that the problem one encounters when trying to antidifferentiate x-1 by reverse application of the power rule is that of division by zero (if r = -1, r + 1 = 0).  One may find oneself wondering whether y = x-1 = 1/x has an antiderivative or not.

Let us consider the graph of y = 1/x to determine whether the function has an antiderivative or not.  We can try to sketch an antiderivative of y = 1/x, looking to see whether we would encounter an obstacle or not if we were to proceed throughout its whole domain (in this case, the set of all real numbers).  To sketch an antiderivative, we need to sketch a function whose slope at x is equal to 1/x.  Let us confine our attention to the positive branch of y = 1/x, which, recall, is the hyperbola x2 – y2 = 2 shifted counterclockwise by 45°.  For tiny positive x, the slope of our sketch must be large and positive (infinitely positive at the asymptote x = 0).  At x = 1, y = 1/x has the value 1.  Therefore, the slope of our sketch must be 1 at x = 1.  For large x, the slope of our sketch must be positive and small.  As x goes to positive infinity, the functional values of y = 1/x approach zero; therefore, the slope of our sketch must approach zero; i.e., the sketch must flatten.  A sketch with this structure has the appearance of the graph of a logarithm function.  Let us test this hypothesis by finding the derivative of logbx?

We know that the logarithm function has a derivative because graphs of logarithms are smooth at all points and never exhibit purely vertical slopes.  The definition of the derivative gives that the derivative of logbx is limh→0 [logb(x+h) – logbx]/h.  Recall that logbw – logbz = logb(w/z).  Employing this property to rewrite the numerator of our limit expression gives the new limit expression limh→0 [logb((x+h)/x)]/h.  Let us call this limit g(x); i.e., g(x) is the derivative of logbx.  Now make the limit expression an exponent of b, the base of logbx.  We have that blimit = bg(x).  After we determine blimit, we must find its logarithm with respect to b to obtain g(x).  blimit = b^[limh→0 [logb((x+h)/x)]/h] = limh→0 b^[[logb((x+h)/x)]/h] = 

limh→0 b^[[logb(x+h)x](1/h)] = limh→0 [b^[logb((x+h)/x)]]1/h = limh→0 ((x+h)/x)1/h.

Let 1/h = t.  As h goes to zero, t will become positively and negatively infinite because h approaches zero from the left and right sides of zero.  Recall that h represents the x-difference between x and an arbitrary other x-value, which is represented by x+h.  This difference is the denominator of the ratio we use to determine the slope of a line segment between a given point (x, y) on a graph and another point (x+h, y+h).  (The derivative, or punctual slope, at a point 

(x, y) is the limit of the slopes of these line segments as h shrinks to zero.)  The value h will be negative when the point (x+h, y+h) is to the left of (x, y), a case we must include to achieve a two-sided punctual slope, which is preferable to a one-sided derivative.  However, we may restrict our attention here to positive h because the smoothness of logbx guarantees that, for every x > 0, left and right limit-approaches (i.e., those through negative and positive h-values, respectively) will yield the same punctual slope.  That h is positive gives us that t is positive.  We now may say that as h goes to zero, t goes to positive infinity (rather than both negative and positive infinity).

We now rewrite our limit expression with t.  We have limt→∞ [(x+(1/t))/x]t = 

limt→∞ [1 + (1/tx)]t = limt→∞ [1 + (1/tx)]tx/x.  I multiplied the exponent t by x/x = 1.  Recall that the domain of the logarithm function is the set of positive real numbers.  Therefore, x never equals zero, and x/x is always defined.  Splitting the numerator and denominator of the exponent tx/x into two exponents, we have limt→∞ [[1 + (1/tx)]tx]1/x.  That x > 0 gives us that tx goes to positive infinity as t goes to positive infinity.  Therefore, limt→∞ [[1 + (1/tx)]tx] = 

limtx→∞ [[1 + (1/tx)]tx]1/x = limtx→∞ [(tx + 1)/tx]1/x = [limtx→∞ [(tx + 1)/tx]]1/x (Recall that x does not move; only t moves.) = e1/x ( 2.7181/x.  We now know that blimit, or bg(x), equals e1/x.  To find g(x), the derivative function we seek, we must take the base-b logarithm of e1/x.  There exists some real number a such that e = ba because both e ( 2.718 and b are positive numbers.  Substituting ba for e, we have that bg(x) = (ba)1/x = ba/x.  The base-b logarithm of ba/x is a/x.  In other words, g(x) equals a/x for some real number a such that ba = e.  Our hypothesis – that the general antiderivative of 1/x is the set of vertical situations of a logarithm function  – is correct because we may adjust b, the base of logbx, to allow a to equal 1.  If a is to equal 1, b must equal e ( 2.718.  Therefore, the general antiderivative of 1/x is logex + C, in which C may be any real number.  We call logex the natural logarithm because logex + C arises naturally as the general antiderivative of 1/x, an extremely plain function (the reciprocal of the most basic function, 

f(x) = x).  The natural logarithm is notated ln(x).

XXXIII.
The derivative of ex
By reflecting the graph of y = logex = ln(x) over the line y = x, we obtain the graph of 

y = ex, the natural logarithm’s inverse function.  That ln(x) and ex are rigid translations of each other suggests that their derivatives are closely related.  We know that the derivative of ln(x) is 1/x; i.e., that the punctual slope of ln(x) at x is 1/x.  In this case, slope has its conventional definition: a change in y divided by the corresponding change in x [Δy/Δx].  Call this y/x-slope and distinguish it from x/y-slope, a change in x divided by the corresponding change in y [Δx/Δy].  Given that y = ln(x), we write that dy/dx = 1/x; i.e., the infinitesimal (d is for differential, an infinitesimal quantity), or punctual, slope of y = ln(x) at x is 1/x.

If we make each side of the equation y = ln(x) an exponent of the number e, we will have the equation ey = eln(x), or ey = x.  We do not change the set of points represented by the equation y = ln(x) when we express it as x = ey.  In other words, the graph of y = ln(x) is also the graph of x = ey (despite that one is expressed as a function of x and the other as a function of y).  Therefore, y = ln(x) and x = ey have the same punctual y/x-slope, which is 1/x when expressed as a function of x.  When expressed as a function of y, the punctual y/x-slope is 1/(ey) because x = ey.  Now, if we knew the x/y-slope of x = ey, we would know the y/x-slope of y = ex (the slope we seek in this section) because x and y are interchangeable as symbols.  We do know the x/y-slope of x = ey: that the y/x-slope of x = ey is 1/(ey) gives that the x/y-slope is (ey)/1 = ey (the reciprocal of the y/x-slope).  Thus we have that the x/y-slope, or derivative with respect to y, of x = ey is itself (i.e., ey)!

By interchanging the symbols x and y, we have that the derivative with respect to x of the function y = ex is ex.  [We can shorten the phrase “derivative with respect to x” to “derivative” in this case because citing the variable of differentiation is unnecessary when it is a function’s independent variable.]

XXXIV.
The connection between antidifferentiation and the area under a curve

Sketch the region beneath the line y = x and above the x-axis between x = 1 and x = 4?  This region is a trapezoid with vertices (1,0), (1,4), (1,1), and (1,4).  Recall that the area of a trapezoid is ½(b1 + b2)h.  Our trapezoid has bases of length 1 and 4 and height (4 – 1) = 3.  Therefore, its area is ½(1 + 4)3 = ½(15) = 7½.  When calculating the area of a region bounded by only straight lines, we may use well-known formulae from elementary geometry.

Now sketch the region beneath y = x2 and above the x-axis between x = 1 and x = 4.  We cannot use our knowledge of the areas of straight-sided figures to calculate directly the area of this region because one of its boundaries is parabolic.  However, by placing rectangles over this region, we can estimate its area.  Divide the x-interval 1( x( 4 into ten subintervals of equal size.  (The subintervals are 1( x(1.3, 1.3( x(1.6, 1.6( x( 1.9, etc.)  Upon these subintervals, build rectangles whose right sides touch but do not cross the function.  Note that the height of each rectangle is given by the function: to find the height, square the right bound of the subinterval upon which the rectangle stands.  The sum S of the areas of these ten rectangles provides a good estimate of the given region’s area.  If we increase the number of rectangles, our estimate will improve.  Any continuous function that is not a horizontal line appears horizontal – but of course is not exactly horizontal – in a sufficiently small x-interval.  Therefore, the horizontal tops of estimating rectangles built on sufficiently small x-intervals are close (and, of course, improvable) approximations of functional behavior in that interval.  The limit of S as the number of rectangles goes to infinity is the area of the region beneath y = x2 between x = 1 and x = 4.

[The fundamental concepts and the logical structure of the following presentation come from a passage in Robert Adams’ Calculus: A Complete Course.]

Assume we have a function f(x) which is continuous (no gaps, no disconnected leaps), smooth (no pointed hills or troughs – at the pointed apices or nadirs of which one, unacceptably, has two choices of punctual slope), and positive (all functional values greater than zero) between x = a and x = b.  Also, assume the following: that F(x) + C (C roams among the real numbers) is the antiderivative of f(x); that F(x) is defined at x = a and x = b and that both F(a) and F(b) are finite; and that F(x) is continuous between x = a and x = b.   Note that the products [f(a)](b – a) and [f(b)](b – a) are rectangular estimates of the area of the region beneath f(x) between x = a and x = b.  In only the case that f(x) is the horizontal line y = f(a) = f(b) do these products give the exact area of the region beneath the curve.

Now we consider F(x).  Let us look at the line segment between F(a) and F(b).  To calculate the slope of this line segment, we find the product [F(b) – F(a)]/(b – a) = Δy/Δx.  We know that F(x) is smooth and finite between a and b because its derivative,  f(x), is continuous between a and b.  The continuity of f(x) tells us that the slopes of F(x) never change abruptly and never achieve infinite magnitude between a and b.  In other words, F(x) never exhibits a pointed hill or trough and never dives or climbs purely vertically between a and b.  That F(x) is both continuous [by assumption, noted above] and smooth between a and b grants that their exists c between a and b such that the slope at the point (c, F(c)) equals [F(b) – F(a)]/(b – a).  I.e., F΄(c) = f(c) = [F(b) – F(a)]/(b – a) for some c between a and b.  The following example helps to make this idea clear.

Imagine walking over flat land from point P1 to point P2 without sudden changes in direction (i.e., smoothly).  Impose a Cartesian coordinate system over the land so that P1 is its origin and P2 is on the x-axis.  If you walk in a straight line, at every point between P1 and P2, your path’s punctual slope will be equal to the slope of the straight line between P1 and P2.  (This slope is zero because our situation of the coordinate system made P1P2 an horizontal line segment).  Assume, though, that you take a path above the straight line from P1 to P2.  At the moment of your departure from the straight line, your path’s punctual slope will be greater than the slope of the straight line.  In order to reach P2, though, at some point, your path must turn downward to rejoin the straight line.  At the moment when your path contacts the straight line, your path’s punctual slope will be less than the slope of the straight line.  In the course of the trip above the straight line, your path first has slope greater than and then has slope less than that of the straight line.  That your path is smooth allows us to conclude that at some intermediate point, your path’s punctual slope will be equal to the slope of the straight line (which is zero).

Smoothness is necessary for this conclusion.  Position a point P3 above segment P1P2, creating triangle P1P3P2.  If you walked from P1 to P2 along the non-horizontal legs of the triangle, your path’s punctual slope never will have the value zero.  The transition from one leg to the next is not smooth.  Continuity is necessary for this conclusion, too.  One can imagine a scenario in which a person walks with a smoothly changing slope but occasionally stops, leaps vertically (relatively to an imposed Cartesian plane), and embarks again at the same punctual slope at which he or she had been traveling before stopping.  In this scenario, smoothness is maintained in the strict sense (though not intuitively) because the path’s slopes change continuously.  However, the continuity of the path is broken, allowing a case in which the slope from P1 to P2 has much greater magnitude (if our walker is a strong leaper) than any punctual slope achieved on the path.

I must note that the continuity of F(x), though assumed, follows naturally but not necessarily from the assumptions made of f(x), whose existence in this context is precedent to that of F(x).  That f(x) is assumed continuous on an endpoint-inclusive interval (infinite functional values at the endpoint of an interval call for exclusion of that endpoint) gives us the smoothness of F(x).  Once we have smoothness, we may choose to let F(x) be continuous or discontinuous – the latter by splitting our interval into subintervals and assigning different C-values to any two neighboring subintervals.  Such discontinuity-producing might be appropriate in some situations, but Occam’s razor forbids our producing a discontinuity in this context because there is not a need.  Our simplest (most elegant) choice is to let F(x) be a continuous antiderivative of f(x). 

We have that there exists c such that  f(c) = [F(b) – F(a)]/(b – a).  If we multiply both sides of this equation by (b – a), the equation becomes [f(c)](b – a) = F(b) – F(a).  The quantity [f(c)](b – a), which is the product of (respectively) the height and width of a rectangle built on the interval [a,b], gives an estimate of the area of the region beneath f(x) between a and b.  [One often will find the notation [a,b] and (a,b) used to denote, respectively, the endpoint-inclusive real-number interval from a to b and the endpoint-exclusive real-number interval from a to b.  [a,b] is a closed interval and (a,b) is an open interval.  The intervals [a,b) and (a,b] are half-open (or half-closed) intervals.]

Recall from above that we improve rectangular approximations of areas of regions beneath curves by increasing the number of rectangles we employ.  Divide the interval [a,b] into  n subintervals of equal width and notate each subinterval [ai–1,ai]: i = 1, 2, 3,…, n; a0 = a and an = b.  Within each subinterval [ai–1,ai], there exists ci such that [f(ci)](ai – ai–1) = F(ai) – F(ai–1).  The sum of the rectangles [f(ci)](ai – ai–1) for all i from n to 1 [note descending listing] equals (F(an) – F(an–1)) + (F(an–1) – F(an–2)) + (F(an–2) – F(an–3)) + … + (F(a1) – F(a0)), which equals F(an) + (-F(an–1) + F(an–1)) + (-F(an–2) + F(an–2)) + (-F(an–3) + F(an–3)) + … + (-F(a1) + F(a1)) – F(a0) = F(an) – F(a0) = F(b) – F(a).  Observe that the quantity F(b) – F(a) does not depend on n.  Therefore, sending n to infinity to seek the sum’s limit – which is the exact area of the region beneath f(x) between a and b – can yield only F(b) – F(a).  In other words, F(b) – F(a) is the exact area of the region beneath f(x) between a and b.  [f(c)](b – a) is a perfect rectangular estimate.
Let’s return to the example f(x) = x2 to determine the exact area of the region beneath its graph between x = 1 and x = 4.  To determine the general antiderivative of f(x) = x2, we must run the power rule backwards.  Recall from section XXXII that reverse application of the power rule to a function xr (r ≠ -1) yields xr+1/(r+1) + C.  Therefore, the general antiderivative of f(x) = x2 is F(x) = ⅓x3 + C.  We may use any antiderivative to perform our calculations.  We choose the simplest, the one in which C = 0: F0(x) = ⅓x3.  The area we wish to know is given by F0(4) – F0(1) = (⅓·43) – (⅓·13) = ⅓(43 – 13) = ⅓(64 – 1) = 63/3 = 21.  

Antidifferentiation, when executed to produce a function which one might use to calculate area (whether the evaluation F(b) – F(a) is performed or not), is called integration.  Recall our discussion in section XXIX of embedded movement.  Differentiation peels away a gross layer of movement (continuous position-change) to reveal a subtler movement (velocity of position-change).  Continuous position-change produces a curve, a one-dimensional object.  Integration embeds in a new function the two-dimensional activity beneath the curve.  This activity is grosser, more encompassing movement than the grossest produced by the original function (continuous position-change).  Integration retains all gross and subtle qualities of the original function [as subtle qualities] and adds a new movement, area-accumulation, at the top of a new, encompassing whole – a new integration.

END

Appendix (unfinished alternate proof of that non-real roots come in conjugate pairs)

The discussion immediately above allows us to confine our attention to even polynomial functions in a proof by induction.  We regard the fact that quadratic equations (i.e., polynomial functions whose highest exponent is 2) have either two real roots or a conjugate pair of non-real roots as the basic case of our inductive proof.  Next, we assume that our desired result holds for the nth case.  In other words, we assume that all of the non-real roots (all may mean zero) of all even polynomial functions whose highest exponent is 2n, come in conjugate pairs.  Then, employing this assumption, we must show that our desired result holds for the n+1st case.  If we can do this, we provide a general ladder by which one can climb from the basic case (independently established to be true) to the second case, from the second case to the third case, from the third case to the fourth, etc. ad infinitum.

Our operating assumption we express symbolically as that all of the non-real roots of polynomial equations x2n + c2n–1x2n–1 + c2n–2x2n–2 + … + c1x + c0 (Note: ci in () come in conjugate pairs (a + bi) and (a – bi).  Now we must show that the same result holds for polynomial equations x2n+2 + c2nx2n + c2n-1x2n–1 + … + c1x + c0 (ci in ().  To show this, we divide the general 2n+2nd-degree polynomial by x2 + t1x + t0 (ti in ().  If we are able to show that such division can yield without remainder a 2nth-degree polynomial with only real coefficients, we will have completed the proof – we will have built the ladder.  We will have shown that any 2n+2nd-degree polynomial can be factored into a quadratic polynomial with only real coefficients (covered by the basic case) and a 2nth-degree polynomial with only real coefficients (covered by the operating assumption).

The sole theoretical challenge of this undertaking lies in showing that such division can be executed without yielding a remainder.  Dividing a polynomial with only real coefficients by a polynomial of lower degree with only real coefficients always yields a polynomial (or monomial) with only real coefficients – and a remainder.  The coefficients of the resulting polynomial are determined by multiplying and adding the real coefficients of the participant polynomials (the ci and ti); imaginary numbers cannot come from this process.  However, if the remainder is nonzero, we will have failed to produce a factoring of the polynomial we divided.  The remainder (an expression in x whose coefficients, too, are composed by simple arithmetic from the ci and ti) might never equal zero.  For our proof, we must acknowledge that not every polynomial of even degree is divisible by every quadratic polynomial.  In almost all cases, we must expect a nonzero remainder.  Our goal, though, is to show that any polynomial of even degree can be divided by at least one quadratic polynomial without leaving a remainder.  Still, limiting ourselves to finding only one cleanly dividing quadratic leaves us with a formidable task.

We need to divide a doubly general polynomial [Both the degree and the coefficients in our 2n+2nd-degree polynomial are general.] by a singly general quadratic polynomial.  The generality of the degree of the former polynomial makes our finishing long division by a quadratic impossible.  We could begin, but to know that our job was complete, we would need to have an exact value for n.  We would hope to gather insight during the endless process into how things would close if we knew n.  To help us gather such insight, let us work with a particular n.  Choose the least n such x2n+2 + c2n+1x2n+1 + … + c1x + c0 has higher degree than the quadratic by which we will divide it.  That n is 1.

Below we divide the general quartic, x4 + c3x3 + c2x2 + c1x + c0 (ci in (), by the general quadratic, x2 + t1x + t0 (ti in ().
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The remainder is in bold.  Now we must determine whether there exist or do not exist real values of c0, c1, c2, and c3 and t0 and t1 such that the remainder equals zero.  Recall that we assume that we were given the quartic polynomial (and that we were asked to find a quadratic polynomial that cleanly divides it or to state that none exists).  Therefore, we know that c0, c1, c2, and c3 are real.  In question is the existence of a dividing quadratic with only real coefficients.  In other words, we do not know a priori that t0 and t1 are real.  Note, though, that the given nature of c0, c1, c2, and c3 allow us to view c1 – c3t0 + 2t0t1 – c2t1 + c3t12 – t13 [the coefficient of x in the remainder] as a cubic expression in two variables (t0 and t1).  Also, we may view c0 – c2t0 + t02 + c3t0t1 – t0t12 [the scalar term in the remainder] as a quadratic expression in two variables (t0 and t1).  Both of these expressions must equal zero.    
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